2-absorbing $I$-prime and 2-absorbing $I$-second submodules

author

Abstract:

Let $R$ be a commutative ring and let $I$ be an ideal of $R$. In this paper, we will introduce the notions of 2-absorbing $I$-prime and 2-absorbing $I$-second submodules of an $R$-module $M$ as a generalization of 2-absorbing and strongly 2-absorbing second submodules of $M$ and explore some basic properties of these classes of modules.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

On the 2-absorbing Submodules

Let $R$ be a commutative ring and $M$ be an $R$-module. In this paper, we investigate some properties of 2-absorbing submodules of $M$. It is shown that $N$ is a 2-absorbing submodule of $M$ if and only if whenever $IJLsubseteq N$ for some ideals $I,J$ of R and a submodule $L$ of $M$, then $ILsubseteq N$ or $JLsubseteq N$ or $IJsubseteq N:_RM$. Also, if $N$ is a 2-absorbing submodule of ...

full text

CLASSICAL 2-ABSORBING SECONDARY SUBMODULES

‎In this work‎, ‎we introduce the concept of classical 2-absorbing secondary modules over a commutative ring as a generalization of secondary modules and investigate some basic properties of this class of modules‎. ‎Let $R$ be a commutative ring with‎ ‎identity‎. ‎We say that a non-zero submodule $N$ of an $R$-module $M$ is a‎ ‎emph{classical 2-absorbing secondary submodule} of $M$ ...

full text

On 2-absorbing Primary Submodules of Modules over Commutative Rings

All rings are commutative with 1 6= 0, and all modules are unital. The purpose of this paper is to investigate the concept of 2-absorbing primary submodules generalizing 2-absorbing primary ideals of rings. Let M be an R-module. A proper submodule N of an R-module M is called a 2-absorbing primary submodule of M if whenever a, b ∈ R and m ∈M and abm ∈ N , then am ∈M -rad(N) or bm ∈M -rad(N) or ...

full text

Adjacency metric dimension of the 2-absorbing ideals graph

Let Γ=(V,E) be a graph and ‎W_(‎a)={w_1,…,w_k } be a subset of the vertices of Γ and v be a vertex of it. The k-vector r_2 (v∣ W_a)=(a_Γ (v,w_1),‎…‎ ,a_Γ (v,w_k)) is the adjacency representation of v with respect to W in which a_Γ (v,w_i )=min{2,d_Γ (v,w_i )} and d_Γ (v,w_i ) is the distance between v and w_i in Γ. W_a is called as an adjacency resolving set for Γ if distinct vertices of ...

full text

Stochastic Games with 2 Non-Absorbing States

In the present paper we consider recursive games that satisfy an absorbing property defined by Vieille. We give two sufficient conditions for existence of an equilibrium payoff in such games, and prove that if the game has at most two non-absorbing states, then at least one of the conditions is satisfied. Using a reduction of Vieille, we conclude that every stochastic game which has at most two...

full text

On L - Fuzzy 2 - Absorbing Ideals

Let L be a complete lattice. In this paper we introduce various definitions of L-fuzzy 2-absorbing ideals of a commutative ring R and give some basic results concerning these classes of ideals.

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 6  issue 2

pages  47- 55

publication date 2019-08-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023