پیش‌بینی دبی ماهانه ورودی به سد بوستان در استان گلستان با استفاده از مدل‌های داده‌کاوی و ترکیبی

Authors

  • میثم صمدی دانشجوی دکتری علوم و مهندسی آبخیزداری، دانشکده مرتع و آبخیزداری، دانشگاه علوم کشاورزی و منابع طبیعی گرگان
Abstract:

در هر برنامه مدیریتی برای منابع آب، آگاهی از شرایط آینده به‌منظور تخصیص بهینه منابع آب به بخش­‌های مختلف از قبیل شرب، کشاورزی و غیره لازم می­‌باشد. آن­چه در این میان مهم می­‌باشد، پیش­‌بینی مقادیر جریان ورودی به سیستم منابع آب در ماه­‌های آینده است. در این راستا، استفاده از روش‌هایی که بتواند با کمینه خطا و با توجه به داده و اطلاعات موجود، جریان رودخانه را پیش­‌بینی کند، از اهمیت فراوانی برخوردار می‌باشد. در پژوهش حاضر، مقادیر دبی ماهانه ورودی به سد بوستان برای آینده با استفاده از داده­‌های هیدرومتری ایستگاه تمر و به­‌کارگیری سه مدل سری زمانی، شبکه عصبی مصنوعی و ماشین بردار پشتیبان و همچنین، سه مدل ترکیبی پیش‌­بینی شد. سپس، با استفاده از معیارهای ارزیابی اقدام به مقایسه عملکرد هر کدام از مدل­‌ها شد. با توجه به نتایج به‌دست آمده در مدل، سری زمانی بر اساس کمینه بودن معیارهای آکاییک و شوارتز، مدل (1,0,1) ARIMA (2,0,0) به­‌عنوان مدل برتر انتخاب شد. در مدل شبکه عصبی، شبکه با ورودی 2 و 4 نرون و در مدل SVM شبکه با ورودی 3، به‌عنوان شبکه برتر انتخاب شدند. در نهایت، با توجه به نتایج به‌دست آمده از معیارهای ارزیابی، مدل سری زمانی بهترین عملکرد را داشته است که مقادیر معیارهای میانگین مربعات خطا، متوسط مقادیر مطلق خطای نسبی، میانگین مطلق خطا و نش­-ساتکلیف برای این مدل به‌ترتیب برابر با 0.88، 4.71، 0.024- و 0.36 به‌دست آمد. در نتیجه، مدل سری زمانی به‌عنوان بهترین مدل برای پیش‌­بینی دبی ماهانه در این ایستگاه معرفی شد.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

مقایسه مدلهای خودهمبسته شبکه عصبی مصنوعی دینامیک و استاتیک در پیش بینی جریان ماهانه ورودی به مخزن سد دز

در مقاله حاضر قابلیت مدل خود همبسته شبکه عصبی مصنوعی دینامیک برای پیش­بینی جریان ماهانه ورودی مخزن سد دز ارزیابی شده و نتایج  به دست آمده با مدل خودهمبسته شبکه عصبی مصنوعی استاتیک مقایسه شده است. در تحقیقات قبل مقایسه مدل‌های استاتیک و دینامیک در شبکه‌های عصبی مصنوعی صورت نگرفته است. ضمناً تحقیق حاضر از حیث خودهمبستگی مدل شبکه عصبی مصنوعی، دارای نوآوری می‌باشد. در این تحقیق آبدهی های ماهانه بین ...

full text

مقایسه تأثیر وضعیت طاق باز و دمر بر وضعیت تنفسی نوزادان نارس مبتلا به سندرم دیسترس تنفسی حاد تحت درمان با پروتکل Insure

کچ ی هد پ ی ش مز ی هن ه و فد : ساسا د مردنس رد نامرد ي سفنت سرتس ي ظنت نادازون داح ي سکا لدابت م ي و نژ د ي سکا ي د هدوب نبرک تسا طسوت هک کبس اـه ي ناـمرد ي فلتخم ي هلمجزا لکتورپ INSURE ماجنا م ي دوش ا اذل . ي هعلاطم ن فدهاب اقم ي هس عضو ي ت اه ي ندب ي عضو رب رمد و زاب قاط ي سفنت ت ي هـب لاتـبم سراـن نادازون ردنس د م ي سفنت سرتس ي لکتورپ اب نامرد تحت داح INSURE ماجنا درگ ...

full text

مدیریت بهره برداری از مخزن با استفاده از روش‌های تصمیم‌گیری چند معیاره در سد مخزنی بوستان- استان گلستان

  کمبود منابع آب و نیز تغییرات کمی و کیفی آنها، تجدید نظر در خصوص ارائه برنامه ­ ها و تصمیم­گیری­های مربوط به تخصیص این منابع را ضروری نموده است. در این پژوهش نتایج مختلف تخصیص­های متفاوت منابع آب سد بوستان استان گلستان با ارائه و تدوین گزینه ها و سناریوهای مختلف مدیریتی مورد بررسی قرار گرفته است. کنترل و تنظیم سطح آب در مخزن سد بطوریکه بتوان آب کافی برای تامین نیاز آبی خصوصا در ماه­های کم آب ر...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 11  issue 4

pages  0- 0

publication date 2019-12-22

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023