پیشبینی جریان روزانه رودخانه اهرچای با استفاده از مدل قوانین M5 و مقایسه آن با شبکههای عصبی مصنوعی المانی (ENN)
Authors
Abstract:
برآورد صحیح آبدهی رودخانهها یکی از موارد مهم در پیشبینی خشکسالی، سیلاب، طراحی سازههای آبی، بهرهبرداری از مخازن سدها و کنترل رسوب میباشد. از اینرو متخصصان علوم مهندسی آب جهت برآورد دقیق جریان، از روشهای هوشمند مانند شبکههای عصبی مصنوعی و روشهای مختلف دادهکاوی بهره گرفتهاند. در این مطالعه، جهت پیشبینی جریان روزانه رودخانه اهرچای، از روشهای شبکه عصبی مصنوعی المانی (ENN) و قوانین درختی M5 بهره گرفته شد. بدین منظور از دادههای جریان روزانه ایستگاه هیدرومتری اورنگ واقع بر رودخانه اهرچای در استان آذربایجانشرقی برای مدلسازی استفاده شد. نتایج حاصل از پیشبینی جریان در یک روز بعد نشان داد که گرچه روش ENN در بهترین سناریو با ساختار شبکه نسبتا پیچیده 1-3-9 که بیانگر 9 گره در لایه ورودی، 3 گره در لایه پنهان و یک گره در لایه خروجی با 90/0R2=، (m3/s)028/0RMSE= و (m3/s)001/0MAE= از دقت بیشتری برخوردار است. اما روش قوانین M5 تنها با دو پارامتر جریان در روز جاری و یک روز قبل به عنوان ورودی، با 83/0 R2=، (m3/s)734/0RMSE= و (m3/s)317/0 MAE= علاوه بر سادگی، از دقت قابل قبولی نیز برخوردار بوده است. مقایسه عملکرد دو مدل نشان داد، گرچه شبکه عصبی المانی دارای دقت بالاتری نسبت به روش M5 می باشد، ولی روش M5 با توجه به ارائه قوانین کارآمد و ساده اگر-آنگاه و روابط خطی ساده برای پیشبینی جریان و نیز تعداد پارامتر ورودی موردنیاز کمتر، میتواند بعنوان یک روش جایگزین مناسب بکار گرفته شود.
similar resources
پیشبینی جریان روزانه رودخانه اهرچای با استفاده از روش های شبکه های عصبی مصنوعی (ANN) و مقایسه آن با سیستم استنتاج فازی- عصبی تطبیقی (ANFIS)
در طی سالهای اخیر پیشبینی فرآیندهای هیدرولوژیکی به منظور بهرهبرداری پایدار از منابع آب با استفاده از روشهای هوشمند مورد توجه دست اندرکاران بخش آب قرار گرفته است. در این تحقیق با بهرهگیری از شبکههای عصبی مصنوعی (ANN) و سیستم استنتاج فازی- عصبی تطبیقی (ANFIS) اقدام به پیشبینی دبی جریان روزانه رودخانه اهر چای واقع در استان آذربایجان شرقی در ایستگاه های اورنگ، برمیس و تازه کند گردید. بر...
full textپیش بینی جریان روزانه رودخانه اهرچای با استفاده از روش های شبکه های عصبی مصنوعی (ann) و مقایسه آن با سیستم استنتاج فازی- عصبی تطبیقی (anfis)
در طی سال های اخیر پیش بینی فرآیندهای هیدرولوژیکی به منظور بهره برداری پایدار از منابع آب با استفاده از روش های هوشمند مورد توجه دست اندرکاران بخش آب قرار گرفته است. در این تحقیق با بهره گیری از شبکه های عصبی مصنوعی (ann) و سیستم استنتاج فازی- عصبی تطبیقی (anfis) اقدام به پیش بینی دبی جریان روزانه رودخانه اهر چای واقع در استان آذربایجان شرقی در ایستگاه های اورنگ، برمیس و تازه کند گردید. برای مد...
full textتولید مصنوعی جریان رودخانه با استفاده از شبکههای عصبی مصنوعی
در این مطالعه قابلیت مدلهای شبکه عصبی مصنوعی در زمینه تولید مصنوعی جریان ارزیابی میشود. مدلی که برای تولید مصنوعی بکار رفته با ترکیب مدل شبکه عصبی و یک مؤلفه تصادفی با توزیع نرمال ایجاد شده است. در توسعه مدل از شبکه عصبی چند لایه تغذیه پیشرفتی با الگوریتم آموزشی انتشار برگشتی خطا استفاده شده است. بر این اساس مدل، سریهای بلند مدت و تا 300 سال جریان مصنوعی روزانه در رودخانه خرسان را تنها با ...
full textمقایسه تأثیر وضعیت طاق باز و دمر بر وضعیت تنفسی نوزادان نارس مبتلا به سندرم دیسترس تنفسی حاد تحت درمان با پروتکل Insure
کچ ی هد پ ی ش مز ی هن ه و فد : ساسا د مردنس رد نامرد ي سفنت سرتس ي ظنت نادازون داح ي سکا لدابت م ي و نژ د ي سکا ي د هدوب نبرک تسا طسوت هک کبس اـه ي ناـمرد ي فلتخم ي هلمجزا لکتورپ INSURE ماجنا م ي دوش ا اذل . ي هعلاطم ن فدهاب اقم ي هس عضو ي ت اه ي ندب ي عضو رب رمد و زاب قاط ي سفنت ت ي هـب لاتـبم سراـن نادازون ردنس د م ي سفنت سرتس ي لکتورپ اب نامرد تحت داح INSURE ماجنا درگ ...
full textپیشبینی جریان روزانه رودخانه نوران چای با استفاده از مدل ترکیبی شبکههای عصبی مصنوعی- تجزیه مؤلفههای اصلی
پیشبینی دقیق جریان روزانه، نقش بهسزایی در مدیریت کارآمد منابع آب ایفا میکند. به این منظور در این تحقیق سعی شده است که جهت مدلسازی هرچه دقیقتر فرآیند پیشبینی جریان روزانه رودخانه نورانچای واقع در حوضه آتشگاه، از شبکههای عصبی مصنوعی (ANN) استفاده گردد. همچنین بهمنظور افزایش کارآیی ANN از تجزیه مؤلفههای اصلی (PCA) جهت پیشپردازش دادههای ورودی استفاده گردیده و درنهایت دادههای خروجی حا...
full textپیش¬بینی جریان روزانه با استفاده از شبکه¬های عصبی مصنوعی و عصبی- موجکی (مطالعه موردی: رودخانه باراندوزچای)
پیشبینی دقیق جریان در رودخانهها یکی از مهمترین ارکان در مدیریت منابع آبهای سطحی به ویژه جهت اتخاذ تدابیر مناسب در مواقع سیلاب و بروز خشکسالیها است. به دلیل اهمیت پیشبینی جریان رودخانه، در این تحقیق جریان روزانه رودخانهی باراندوزچای در دو ایستگاه بیبکران و دیزج طی یک دورهی آماری 20 ساله با استفاده از مدل عصبی- موجکی (WNN) که تلفیق آنالیز موجک و شبکه عصبی مصنوعی (ANN) میباشد، پیشبینی گرد...
full textMy Resources
Journal title
volume 10 issue 33
pages 11- 18
publication date 2016-07
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023