مدل‌سازی و بهینه‌سازی واحد تولید هیدروژن با شبکه‌ی‌ عصبی مصنوعی و الگوریتم ژنتیک

Authors

  • ایمان اکبری دانشجوی دکترای مهندسی شیمی، دانشکده مهندسی شیمی، دانشگاه صنعتی اصفهان، اصفهان، ایران
  • سید محمد قریشی استاد مهندسی شیمی، دانشکده مهندسی شیمی، دانشگاه صنعتی اصفهان، اصفهان، ایران
  • سید مهرداد قریشی دانشجوی کارشناسی ارشد مهندسی نرم افزار، دانشکده مهندسی کامپیوتر، دانشگاه امام رضا، مشهد، ایران
  • مجید وفائی جهان استادیار مهندسی نرم افزار، دانشکده مهندسی کامپیوتر، واحد مشهد، دانشگاه آزاد اسلامی، مشهد، ایران
  • نرجس السادات رضوی کارشناس ارشد مهندسی شیمی، دانشکده مهندسی شیمی، دانشگاه کاشان، کاشان، ایران
Abstract:

هدف اصلی این پژوهش، مدل‌سازی واحد صنعتی تولید هیدروژن براساس تبدیل متان با بخار آب با کاربرد شبکه‌ی عصبی مصنوعی است. عامل‌های دبی فراورده و انرژی مصرفی به عنوان عامل‌های خروجی مدل در نظر گرفته شد و دو شبکه‌ی عصبی مجزا برای پیش‌بینی این دو عامل‌ مدنظر قرارگرفت. نتیجه‌های مدل‌سازی با دقت بسیار خوب، خطای متوسط مطلق، خطای متوسط نسبی و خطای احتمالی بین داده‌های واقعی کارخانه و مدل را به ترتیب برابر با 2/14، 1/21 و 2/9 برای شبکه‌ی اول و 0/37، 0/84 و 0/55 برای شبکه‌ی دوم پیش‌بینی کرد. بر اساس تجزیه حساسیت، دمای گاز سنتز خروجی از مبدل، بیشترین تأثیر را بر تولید هیدروژن و دبی جریان گاز اتلافی به عنوان تأثیرگذارترین عامل‌ بر میزان مصرف انرژی واحد شناخته شدند. پس از مدل‌سازی واحد، از الگوریتم ژنتیک به منظور یافتن شرایط عملیاتی بهینه استفاده شد. به این صورت که سود ناخالص به‌دست آمده از فرایند به عنوان تابع هدف مدنظر قرار گرفت و عامل‌های عملیاتی به منظور دست‌یابی به حداکثر سود با استفاده از الگوریتم ژنتیک بهینه شد. نتیجه‌های الگوریتم ژنتیک سود به‌دست آمده از فرایند را 42/56 دلار بر ساعت پیش‌بینی کرد که 25 درصد بیشتر از میانگین سود واحد در شرایط واقعی است.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

مدل سازی و بهینه سازی واحد تولید هیدروژن با شبکه ی عصبی مصنوعی و الگوریتم ژنتیک

هدف اصلی این پژوهش، مدل سازی واحد صنعتی تولید هیدروژن براساس تبدیل متان با بخار آب با کاربرد شبکه ی عصبی مصنوعی است. عامل های دبی فراورده و انرژی مصرفی به عنوان عامل های خروجی مدل در نظر گرفته شد و دو شبکه ی عصبی مجزا برای پیش بینی این دو عامل مدنظر قرارگرفت. نتیجه های مدل سازی با دقت بسیار خوب، خطای متوسط مطلق، خطای متوسط نسبی و خطای احتمالی بین داده های واقعی کارخانه و مدل را به ترتیب برابر ب...

full text

سینتیک خشک کردن مادون قرمز برش های میوه به و مدلسازی آن با روش الگوریتم ژنتیک-شبکه‌های عصبی مصنوعی

در این تحقیق جهت خشک کردن برش های میوه به از روش پرتودهی مادون قرمز استفاده شد. برای این منظور اثر دمای خشک کردن 50، 60، 70 و 80 درجه سانتیگراد که ناشی از توان های به ترتیب 51، 73، 98 و 125 وات لامپ مادون قرمز بود مورد مطالعه قرار گرفت. نتایج بدست آمده نشان دادند که با افزایش دما سرعت خشک کردن افزایش می یابد. با افزایش دما از 50 به 80 درجه سانتیگراد زمان خشک کردن حدود 60 درصد کاهش یافت. با اعما...

full text

مقایسه تأثیر وضعیت طاق باز و دمر بر وضعیت تنفسی نوزادان نارس مبتلا به سندرم دیسترس تنفسی حاد تحت درمان با پروتکل Insure

کچ ی هد پ ی ش مز ی هن ه و فد : ساسا د مردنس رد نامرد ي سفنت سرتس ي ظنت نادازون داح ي سکا لدابت م ي و نژ د ي سکا ي د هدوب نبرک تسا طسوت هک کبس اـه ي ناـمرد ي فلتخم ي هلمجزا لکتورپ INSURE ماجنا م ي دوش ا اذل . ي هعلاطم ن فدهاب اقم ي هس عضو ي ت اه ي ندب ي عضو رب رمد و زاب قاط ي سفنت ت ي هـب لاتـبم سراـن نادازون ردنس د م ي سفنت سرتس ي لکتورپ اب نامرد تحت داح INSURE ماجنا درگ ...

full text

مدل‌سازی فرایند تبدیل خشک متان به‌کمک پلاسما با استفاده از شبکه عصبی مصنوعی و الگوریتم ژنتیک

 پیش‌بینی فراورده‌های (هیدروژن و کربن مونوکسید) تبدیل خشک متان به‌کمک پلاسما در فشار جوی با استفاده از شبکه عصبی مصنوعی شبیه‌سازی شد. داده‌های تجربی موردنیاز برای مدل‌سازی شبکه عصبی مصنوعی از یک واکنشگاه پلاسمایی تخلیه کرونا جمع‌آوری شد. اثر عامل‌های فرایندی (توان تخلیه پلاسما، دبی خوراک ورودی) بر کارایی تبدیل متان و گزینش‌پذیری نسبت به فراورده‌های مورد بررسی قرار گرفتند. شبکه پیش‌خور با الگوری...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 7  issue 4

pages  5- 15

publication date 2014-02-20

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023