تشخیص پیوسته میزان استرس در طول رانندگی با استفاده از روش خوشه‌بندی Fuzzy c-means

Authors

Abstract:

Stress is one of the main causes of physical and mental disorders leading to various types of diseases. In recent two decades, stress level detection during driving to avoid accidents has attracted much of researchers’ attentions. However, the existing studies usually neglect this fact that stress level during driving varies due to irregular events. Contrary to the previous works, this paper demonstrates that to assume a fixed level of stress for a long period- e.g. while driving in highway- is unreasonable. According to the above assumption, a novel approach for continuous stress detection is proposed based on fuzzy c-means clustering and cluster labeling by the expert. Fuzzy c-means clustering is used to specify levels of stress instead of the former different classification and labeling methods. Concurrently, utilizing background knowledge of data and clustering results, the label of each cluster is obtained. Then, proper weights are assigned to labeled clusters.  By combining the membership values of clusters and weights associated with each cluster’s label, a score of stress is obtained in short time intervals. Stress in driving dataset provide stressful conditions during real driving. The experiments were performed on a specific route of open roads and where drivers traverse were limited to daily commutes. For each drive, Electrocardiogram (ECG), Electromyogram (EMG), foot and hand Galvanic skin response (GSR), respiration and marker signals were acquired from the sensors worn by the driver. Clearly, the more number of physiological signals are used, the more computational cost must be paid, so in this work, heart rate, EMG, foot GSR and hand GSR from mentioned dataset are selected. After that, six features consisting of the mean value of the heart rate, the mean value of EMG, the mean value of the hand GSR and the mean value of foot GSR in addition to mean absolute differences for hand and foot GSR are extracted for each 10 second window (100 second window with 90% overlap) of signals. Next step is to cluster via fuzzy c-means algorithm. In this study, the data is located in 5 clusters and according to the membership degree of each window, input signals and background data from dataset, an adequate label is assigned by the expert to each cluster. The labels of these five clusters are "very low", "low", "medium", “high" and "very high" stress, which are respectively the least stressed to the most stressful. Therefore, the base weight vector is obtained as . The weights assigned to the clusters will be a permutation of the mentioned base weight vector. After assigning the weight of clusters, in each window, the membership degree obtained by the Fuzzy c-means method is multiplied by the weight assigned to that cluster and the resulting numbers are accumulated for the 5 clusters. The calculated value scales to the range of 0 to 100, in order to quantifying the stress. For better representation, a collection of 100 different colors in the range of dark blue to dark red of the visible spectra will be defined by the use of “colormap” command in MATLAB. By taking the calculated value to the range of 0 to 100, one of the mentioned colors will be chosen. So the color will be associated to the stress value of the corresponding window. In this paper, in addition to the qualitative assessment of the results, the correlation between the determined stress and subjective rating scores is considered as a quantitative criterion. The results illustrate the effectiveness of the proposed method to improve both the precision and accuracy of stress detection. In fact, the stress in driving dataset have imprecise labels which the proposed systematic approach estimates the stress continuously utilizing the background knowledge of data. The results clearly represent valid, efficient criteria for stress during driving in each moment without using long time window, show the continues stress from the beginning of the experiment until the end of it, and exaggerate individual differs and unexpected hazards during the experiment.  

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

رهیافتی خودکار برای ارزیابی پیوسته استرس حین رانندگی بر مبنای روش خوشه بندی c-means فازی

این مقاله روش جدیدی برای ارزیابی استرس رانندگی با استفاده از خوشه بندی فازی ارائه می دهد. در پژوهش های پیشین، استرس رانندگی در سطوحی گسسته اندازه‎گیری شده اند، اما در این مقاله نشان داده شده که ثابت در نظر گرفتن سطح استرس در یک دوره زمانی طولانی صحیح نیست. با کنار گذاشتن گسسته در نظر گرفتن سطوح استرس، دادگان بدون برچسب فرض می شوند. در نتیجه یک روش خوشه بندی پیشنهاد ‎شده تا فقدان طبقه بندی کننده...

full text

تصحیح سیستم طبقه‌بندی امتیاز توده‌سنگ با استفاده ‌از الگوریتم‌های‌ خوشه‌بندی ‌‌k-means و ‌fuzzy c-means

با توجه به اهمیت و کاربرد سیستم طبقه‌بندی امتیاز توده‌سنگ در مهندسی ‌سنگ، هدف از این مقاله تصحیح کلاس‌های نهایی این سیستم طبقه‌بندی با استفاده از الگوریتم‌های ‌خوشه‌بندی ‌k-means و fuzzy c-means (FCM)‌ است. در سیستم طبقه‌بندی امتیاز توده‌سنگ داده‌ها توسط یک سری از اطلاعات اولیه بر مبنای نظریات و قضاوت‌های تجربی طبقه‌بندی می‌شوند ولی با کاربرد الگوریتم‌های خوشه‌بندی در این سیستم ‌طبقه‌بندی، کلاس...

full text

استخراج الگوهای ترافیکی شهر calgary با استفاده از الگوریتم fuzzy c-means

ترافیک و حل مشکلات آن یکی از زمینه های کاربردی مهم در سیستم های اطلاعات مکانی می باشد. با توجه به اهمیت و تاثیرات ترافیک در جوانب مختلف حیات انسان، در نظر گرفتن مکانیزم هایی کارا جهت مدیریت آنها، همواره مورد توجه متخصصان حوزه های مختلف بوده است. داده کاوی مکانی فرآیندی است که الگو های مکانی مفید و جالب توجه را از پایگاه داده مکانی به صورت اتوماتیک از میان کمیت های بیشمار داده های مکانی استخرا...

اثر بربرین در تنظیم آستروسیتهای Gfap+ ناحیه هیپوکمپ موشهای صحرایی دیابتی شده با استرپتوزوتوسین

Background: Diabetes mellitus increases the risk of central nervous system (CNS) disorders such as stroke, seizures, dementia, and cognitive impairment. Berberine, a natural isoquinolne alkaloid, is reported to exhibit beneficial effect in various neurodegenerative and neuropsychiatric disorders. Moreover astrocytes are proving critical for normal CNS function, and alterations in their activity...

full text

اثر بربرین در تنظیم آستروسیتهای Gfap+ ناحیه هیپوکمپ موشهای صحرایی دیابتی شده با استرپتوزوتوسین

Background: Diabetes mellitus increases the risk of central nervous system (CNS) disorders such as stroke, seizures, dementia, and cognitive impairment. Berberine, a natural isoquinolne alkaloid, is reported to exhibit beneficial effect in various neurodegenerative and neuropsychiatric disorders. Moreover astrocytes are proving critical for normal CNS function, and alterations in their activity...

full text

Vector fuzzy C-means

Many variants of fuzzy c-means (FCM) clustering method are applied to crisp numbers but only a few of them are extended to non-crisp numbers, mainly due to the fact that the latter needs complicated equations and exhausting calculations. Vector form of fuzzy c-means (VFCM), proposed in this paper, simplifies the FCM clustering method applying to non-crisp (symbolic interval and fuzzy) numbers. ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 14  issue 4

pages  129- 142

publication date 2018-03

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023