تخمین شاخص کیفیت فیزیکی خاک و عدم قطعیت با به کارگیری شبکه عصبی مصنوعی بوت استرپ

Authors

  • فرزین شهبازی دانشیار گروه خاکشناسی، دانشکده کشاورزی، دانشگاه تبریز
  • معصومه صبری دانشجوی دکتری، گروه علوم خاک، دانشکده کشاورزی دانشگاه تبریز
  • کامران ولیزاده استادیار گروه جغرافیای طبیعی،دانشکده جغرافیا و برنامه ریزی، دانشگاه تبریز
Abstract:

This article doesn't have abstract

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

تحلیل عدم قطعیت مدل‌های شبکه عصبی مصنوعی و ماشین بردار پشتیبان در تخمین بارش

در این تحقیق سعی گردید، ترکیب ورودی و مدل مناسب برای تخمین بارش‌های شهرستان شاهرود تعیین گردد. برای رسیدن به این هدف از داده­های ماهانه هواشناسی شامل تبخیر، دما، رطوبت نسبی هوا، تابش­های خورشیدی، سرعت باد در دوره­ آماری 1342 تا 1394 و مدل­های شبکه عصبی مصنوعی و ماشین بردار پشتیبان استفاده شده است. 75 درصد از داده­ها برای واسنجی و 25 درصد دیگر جهت اعتبارسنجی مدل­ها استفاده شده است. در این تحقیق ...

full text

بررسی عدم قطعیت مدل شبکه عصبی در ریز‌مقیاس گردانی ‏HadCM3‎‏ با روش ‏فاصله اطمینان بوت استراپ

در روش‌های ریزمقیاس گردانی آماری که بر اساس رابطه بین داده‌های گردش عمومی اتمسفری-اقیانوسی و هر یک از متغیرهای اقلیمی (بارش، دمای کمینه، دمای بیشینه) ایجاد می‌شود، دوره آتی آن متغیر اقلیمی شبیه‌سازی می‌شود. از آن‌جایی که در شبیه‌سازی، تمامی عوامل رخ داد، یک متغیر در مدل وارد نمی‌شود، لذا برآورد به‌وجود آمده همراه با خطا و یا عدم قطعیت می‌باشد. خروجی مدل‌های ریزمقیاس گردانی به‌عنوان ورودی در مدل...

full text

مقایسه تأثیر وضعیت طاق باز و دمر بر وضعیت تنفسی نوزادان نارس مبتلا به سندرم دیسترس تنفسی حاد تحت درمان با پروتکل Insure

کچ ی هد پ ی ش مز ی هن ه و فد : ساسا د مردنس رد نامرد ي سفنت سرتس ي ظنت نادازون داح ي سکا لدابت م ي و نژ د ي سکا ي د هدوب نبرک تسا طسوت هک کبس اـه ي ناـمرد ي فلتخم ي هلمجزا لکتورپ INSURE ماجنا م ي دوش ا اذل . ي هعلاطم ن فدهاب اقم ي هس عضو ي ت اه ي ندب ي عضو رب رمد و زاب قاط ي سفنت ت ي هـب لاتـبم سراـن نادازون ردنس د م ي سفنت سرتس ي لکتورپ اب نامرد تحت داح INSURE ماجنا درگ ...

full text

تخمین نسبت باربری کالیفرنیا خاک های مردابی بهسازی شده با استفاده از شبکه عصبی مصنوعی

امروزه استفاده از روش اختلاط عمیق برای بهبود روسازی جاده ها گسترش یافته است. یکی از مهمترین اهداف این روش ، افزایش ضریب باربری کالیفرنیا و کاهش نشست روسازی می باشد. در سال های اخیر، مدلسازی به وسیله هوش محاسباتی، جایگاه ویژه ای در مهندسی عمران پیدا کرده است وتخمین رفتار و فرایند مقاوم سازی که با پیچیدگی های فراوانی روبه رو بوده، تا حدودی به کمک این روش ها میسر شده است. هدف اصلی این تحقیق، ساخت ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 26  issue شماره1 بخش 2

pages  173- 187

publication date 2016-05-21

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023