a note on the power graph of a finite group
Authors
abstract
suppose $gamma$ is a graph with $v(gamma) = { 1,2, cdots, p}$and $ mathcal{f} = {gamma_1,cdots, gamma_p} $ is a family ofgraphs such that $n_j = |v(gamma_j)|$, $1 leq j leq p$. define$lambda = gamma[gamma_1,cdots, gamma_p]$ to be a graph withvertex set $ v(lambda)=bigcup_{j=1}^pv(gamma_j)$ and edge set$e(lambda)=big(bigcup_{j=1}^pe(gamma_j)big)cupbig(bigcup_{ijine(gamma)}{uv;uin v(gamma_i),vin v(gamma_j)}big) $. thegraph $ lambda$ is called the $gamma-$join of $ mathcal{f}$.the power graph $mathcal{p}(g)$ of a group $g$ is the graphwhich has the group elements as vertex set and two elements areadjacent if one is a power of the other. the aim of this paper isto prove $mathcal{p}(mathbb{z}_{n}) = k_{phi(n)+1} +delta_n[k_{phi(d_1)},k_{phi(d_2)},cdots, k_{phi(d_{p})}]$,where $delta_n$ is a graph with vertex and edge sets $v(delta_n)={d_i | 1,nnot = d_i | n, 1leq ileq p}$ and $ e(delta_n)={ d_id_j | d_i|d_j, 1leq i
similar resources
A note on the order graph of a group
The order graph of a group $G$, denoted by $Gamma^*(G)$, is a graph whose vertices are subgroups of $G$ and two distinct vertices $H$ and $K$ are adjacent if and only if $|H|big{|}|K|$ or $|K|big{|}|H|$. In this paper, we study the connectivity and diameter of this graph. Also we give a relation between the order graph and prime graph of a group.
full textOn the planarity of a graph related to the join of subgroups of a finite group
Let $G$ be a finite group which is not a cyclic $p$-group, $p$ a prime number. We define an undirected simple graph $Delta(G)$ whose vertices are the proper subgroups of $G$, which are not contained in the Frattini subgroup of $G$ and two vertices $H$ and $K$ are joined by an edge if and only if $G=langle H , Krangle$. In this paper we classify finite groups with planar graph. ...
full texta note on the coprime graph of a group
in this paper we study the coprime graph of a group $g$. the coprime graph of a group $g$, is a graph whose vertices are elements of $g$ and two distinct vertices $x$ and $y$ are adjacent iff $(|x|,|y|)=1$. in this paper we classify all the groups which the coprime graph is a complete r-partite graph or a planar graph. also we study the automorphism group of the coprime graph.
full texta note on the order graph of a group
the order graph of a group $g$, denoted by $gamma^*(g)$, is a graph whose vertices are subgroups of $g$ and two distinct vertices $h$ and $k$ are adjacent if and only if $|h|big{|}|k|$ or $|k|big{|}|h|$. in this paper, we study the connectivity and diameter of this graph. also we give a relation between the order graph and prime graph of a group.
full textSOME RESULTS ON THE COMPLEMENT OF THE INTERSECTION GRAPH OF SUBGROUPS OF A FINITE GROUP
Let G be a group. Recall that the intersection graph of subgroups of G is an undirected graph whose vertex set is the set of all nontrivial subgroups of G and distinct vertices H,K are joined by an edge in this graph if and only if the intersection of H and K is nontrivial. The aim of this article is to investigate the interplay between the group-theoretic properties of a finite group G and the...
full textThe power graph of a finite group
The power graph of a group is the graph whose vertex set is the group, two elements being adjacent if one is a power of the other. We observe that nonisomorphic finite groups may have isomorphic power graphs, but that finite abelian groups with isomorphic power graphs must be isomorphic. We conjecture that two finite groups with isomorphic power graphs have the same number of elements of each o...
full textMy Resources
Save resource for easier access later
Journal title:
international journal of group theoryPublisher: university of isfahan
ISSN 2251-7650
volume 5
issue 1 2016
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023