restrictions on commutativity ratios in finite groups
Authors
abstract
we consider two commutativity ratios $pr(g)$ and $f(g)$ in a finite group $g$ and examine the properties of $g$ when these ratios are `large'. we show that if $pr(g) > frac{7}{24}$, then $g$ is metabelian and we give threshold results in the cases where $g$ is insoluble and $g'$ is nilpotent. we also show that if $f(g) > frac{1}{2}$, then $f(g) = frac{n+1}{2n}$, for some natural number $n$.
similar resources
Finite groups with three relative commutativity degrees
For a finite group $G$ and a subgroup $H$ of $G$, the relative commutativity degree of $H$ in $G$, denoted by $d(H,G)$, is the probability that an element of $H$ commutes with an element of $G$. Let $mathcal{D}(G)={d(H,G):Hleq G}$ be the set of all relative commutativity degrees of subgroups of $G$. It is shown that a finite group $G$ admits three relative commutativity degrees if a...
full textfinite groups with three relative commutativity degrees
for a finite group $g$ and a subgroup $h$ of $g$, the relative commutativity degree of $h$ in $g$, denoted by $d(h,g)$, is the probability that an element of $h$ commutes with an element of $g$. let $mathcal{d}(g)={d(h,g):hleq g}$ be the set of all relative commutativity degrees of subgroups of $g$. it is shown that a finite group $g$ admits three relative commutativity degrees if a...
full textFurther restrictions on the structure of finite CI-groups
A group G is called a CI-group if, for any subsets S, T ⊂ G, whenever two Cayley graphs Cay(G, S) and Cay(G, T ) are isomorphic, there exists an element σ ∈ Aut(G) such that S = T . The problem of seeking finite CI-groups is a longstanding open problem in the area of Cayley graphs. This paper contributes towards a complete classification of finite CI-groups. First it is shown that the Frobenius...
full textOn Commutativity and Finiteness in Groups
The second author introduced notions of weak permutablity and commutativity between groups and proved the finiteness of a group generated by two weakly permutable finite subgroups. Two groups H, K weakly commute provided there exists a bijection f : H → K which fixes the identity and such that h commutes with its image h for all h ∈ H. The present paper gives support to conjectures about the ni...
full textCommutativity Degrees of Wreath Products of Finite Abelian Groups
We compute commutativity degrees of wreath products A o B of finite abelian groups A and B . When B is fixed of order n the asymptotic commutativity degree of such wreath products is 1/n2. This answers a generalized version of a question posed by P. Lescot. As byproducts of our formula we compute the number of conjugacy classes in such wreath products, and obtain an interesting elementary numbe...
full textMy Resources
Save resource for easier access later
Journal title:
international journal of group theoryPublisher: university of isfahan
ISSN 2251-7650
volume 3
issue 4 2014
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023