on the existence of nonnegative solutions for a class of fractional boundary value problems
Authors
abstract
in this paper, we provide sufficient conditions for the existence of nonnegative solutions of a boundary value problem for a fractional order differential equation. by applying kranoselskii`s fixed--point theorem in a cone, first we prove the existence of solutions of an auxiliary bvp formulated by truncating the response function. then the arzela--ascoli theorem is used to take $c^1$ limits of sequences of such solutions.
similar resources
On the existence of nonnegative solutions for a class of fractional boundary value problems
In this paper, we provide sufficient conditions for the existence of nonnegative solutions of a boundary value problem for a fractional order differential equation. By applying Kranoselskii`s fixed--point theorem in a cone, first we prove the existence of solutions of an auxiliary BVP formulated by truncating the response function. Then the Arzela--Ascoli theorem is used to take $C^1$ ...
full textExistence of three solutions for a class of fractional boundary value systems
In this paper, under appropriate oscillating behaviours of the nonlinear term, we prove some multiplicity results for a class of nonlinear fractional equations. These problems have a variational structure and we find three solutions for them by exploiting an abstract result for smooth functionals defined on a reflexive Banach space. To make the nonlinear methods work, some careful analysis of t...
full textExistence of solutions of boundary value problems for Caputo fractional differential equations on time scales
In this paper, we study the boundary-value problem of fractional order dynamic equations on time scales, $$ ^c{Delta}^{alpha}u(t)=f(t,u(t)),;;tin [0,1]_{mathbb{T}^{kappa^{2}}}:=J,;;1
full textExistence of positive solution to a class of boundary value problems of fractional differential equations
This paper is devoted to the study of establishing sufficient conditions for existence and uniqueness of positive solution to a class of non-linear problems of fractional differential equations. The boundary conditions involved Riemann-Liouville fractional order derivative and integral. Further, the non-linear function $f$ contain fractional order derivative which produce extra complexity. Than...
full textExistence of multiple solutions for Sturm-Liouville boundary value problems
In this paper, based on variational methods and critical point theory, we guarantee the existence of infinitely many classical solutions for a two-point boundary value problem with fourth-order Sturm-Liouville equation; Some recent results are improved and by presenting one example, we ensure the applicability of our results.
full textOn the existence of nonnegative solutions of nonlocal boundary value problems for a class of fractional differential equations
This article studies the existence of nonnegative solutions for a boundary value problem (BVP) of nonlinear fractional differential equations. Some new existence results are obtained by applying Kranoselskii‘s fixed–point theorem in a cone. First we prove the existence of solutions of an auxiliary BVP formulated by truncating the response function. Then the Arzela–Ascoli theorem is used to take...
full textMy Resources
Save resource for easier access later
Journal title:
caspian journal of mathematical sciencesPublisher: university of mazandaran
ISSN 1735-0611
volume 2
issue 1 2014
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023