differential polynomial rings of triangular matrix rings
Authors
abstract
similar resources
Strongly clean triangular matrix rings with endomorphisms
A ring $R$ is strongly clean provided that every element in $R$ is the sum of an idempotent and a unit that commutate. Let $T_n(R,sigma)$ be the skew triangular matrix ring over a local ring $R$ where $sigma$ is an endomorphism of $R$. We show that $T_2(R,sigma)$ is strongly clean if and only if for any $ain 1+J(R), bin J(R)$, $l_a-r_{sigma(b)}: Rto R$ is surjective. Furt...
full textOn Skew Triangular Matrix Rings
For a ring R, endomorphism α of R and positive integer n we define a skew triangular matrix ring Tn(R,α). By using an ideal theory of a skew triangular matrix ring Tn(R,α) we can determine prime, primitive, maximal ideals and radicals of the ring R[x;α]/〈xn〉, for each positive integer n, where R[x;α] is the skew polynomial ring, and 〈xn〉 is the ideal generated by xn.
full textZero-Divisor Graph of Triangular Matrix Rings over Commutative Rings
Let R be a noncommutative ring. The zero-divisor graph of R, denoted by Γ(R), is the (directed) graph with vertices Z(R)∗ = Z(R)− {0}, the set of nonzero zero-divisors of R, and for distinct x, y ∈ Z(R)∗, there is an edge x → y if and only if xy = 0. In this paper we investigate the zero-divisor graph of triangular matrix rings over commutative rings. Mathematics Subject Classification: 16S70; ...
full textModules over Differential Polynomial Rings
This note announces a number of results on the structure of differential modules over differential rings, where differential ring means a ring with a family of derivations and differential module means a module having a family of operators compatible with the derivations of the ring. To fix notation, throughout the paper we let A denote an associative ring, M = AM an 4-module, k the correspondi...
full textDerived Equivalences for Triangular Matrix Rings
We generalize derived equivalences for triangular matrix rings induced by a certain type of classical tilting module introduced by Auslander, Platzeck and Reiten to generalize reflection functors in the representation theory of quivers due to Bernstein, Gelfand and Ponomarev.
full textMy Resources
Save resource for easier access later
Journal title:
bulletin of the iranian mathematical societyPublisher: iranian mathematical society (ims)
ISSN 1017-060X
volume 34
issue No. 2 2011
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023