topological soliton solutions of the some nonlinear partial differential equations

Authors

ozkan guner

dumlupınar university, school of applied sciences, department of management information systems, kutahya-turkey

abstract

in this paper, we obtained the 1-soliton solutions of the symmetric regularized long wave (srlw) equation and the (3+1)-dimensional shallow water wave equations. solitary wave ansatz method is used to carry out the integration of the equations and obtain topological soliton solutions the physical parameters in the soliton solutions are obtained as functions of the dependent coefficients. note that, this method is always useful and desirable to construct exact solutions especially soliton-type envelope for the understanding of most nonlinear physical phenomena.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Topological soliton solutions of the some nonlinear partial differential equations

In this paper, we obtained the 1-soliton solutions of the symmetric regularized long wave (SRLW) equation and the (3+1)-dimensional shallow water wave equations. Solitary wave ansatz method is used to carry out the integration of the equations and obtain topological soliton solutions The physical parameters in the soliton solutions are obtained as functions of the dependent coefficients. Note t...

full text

New explicit and Soliton Wave Solutions of Some Nonlinear Partial Differential Equations with Infinite Series Method

To start with, having employed transformation wave, some nonlinear partial differential equations have been converted into an ODE. Then, using the infinite series method for equations with similar linear part, the researchers have earned the exact soliton solutions of the selected equations. It is required to state that the infinite series method is a well-organized method for obtaining exact s...

full text

new explicit and soliton wave solutions of some nonlinear partial differential equations with infinite series method

to start with, having employed transformation wave, some nonlinear partial differential equations have been converted into an ode. then, using the infinite series method for equations with similar linear part, the researchers have earned the exact soliton solutions of the selected equations. it is required to state that the infinite series method is a well-organized method for obtaining exact s...

full text

global results on some nonlinear partial differential equations for direct and inverse problems

در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...

Topological soliton solutions for some nonlinear evolution equations

and hosti .2013.08.0 Abstract In this paper, the topological soliton solutions of nonlinear evolution equations are obtained by the solitary wave ansatz method. Under some parameter conditions, exact solitary wave solutions are obtained. Note that it is always useful and desirable to construct exact solutions especially soliton-type (dark, bright, kink, anti-kink, etc.) envelope for the underst...

full text

Exact travelling wave solutions for some complex nonlinear partial differential equations

This paper reflects the implementation of a reliable technique which is called $left(frac{G'}{G}right)$-expansion  ethod for  constructing exact travelling wave solutions of nonlinear partial  differential equations. The proposed algorithm has been successfully tested on two two selected equations, the balance numbers of which are not positive integers namely Kundu-Eckhaus equation and  Derivat...

full text

My Resources

Save resource for easier access later


Journal title:
computational methods for differential equations

جلد ۲، شماره ۴، صفحات ۲۲۷-۲۴۲

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023