on the zero-divisor cayley graph of a finite commutative ring

Authors

a. r. naghipour

abstract

let r be a fnite commutative ring and n(r) be the set of non unit elements of r. the non unit graph of r, denoted by gamma(r), is the graph obtained by setting all the elements of n(r) to be the vertices and defning distinct vertices x and y to be adjacent if and only if x - yin n(r). in this paper, the basic properties of gamma(r) are investigated and some characterization results regarding connectedness, girth and planarity of gamma(r) are given.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

On the Zero-divisor Cayley Graph of a Finite Commutative Ring

Let R be a fnite commutative ring and N(R) be the set of non unit elements of R. The non unit graph of R, denoted by Gamma(R), is the graph obtained by setting all the elements of N(R) to be the vertices and defning distinct vertices x and y to be adjacent if and only if x - yin N(R). In this paper, the basic properties of Gamma(R) are investigated and some characterization results regarding co...

full text

Properties of extended ideal based zero divisor graph of a commutative ring

This paper deals with some results concerning the notion of extended ideal based zero divisor graph $overline Gamma_I(R)$ for an ideal $I$ of a commutative ring $R$ and characterize its bipartite graph. Also, we study the properties of an annihilator of $overline Gamma_I(R)$.

full text

The Zero-Divisor Graph of a Commutative Ring

Ž . Ž . Let R be a commutative ring with 1 and let Z R be its set of Ž . Ž . zero-divisors. We associate a simple graph G R to R with vertices Ž . Ž . 4 Z R * s Z R y 0 , the set of nonzero zero-divisors of R, and for disŽ . tinct x, y g Z R *, the vertices x and y are adjacent if and only if xy s 0. Ž . Thus G R is the empty graph if and only if R is an integral domain. The main object of this...

full text

Median and Center of Zero-Divisor Graph of Commutative Semigroups

For a commutative semigroup S with 0, the zero-divisor graph of S denoted by &Gamma(S) is the graph whose vertices are nonzero zero-divisor of S, and two vertices x, y are adjacent in case xy = 0 in S. In this paper we study median and center of this graph. Also we show that if Ass(S) has more than two elements, then the girth of &Gamma(S) is three.

full text

THE ZERO-DIVISOR GRAPH OF A MODULE

Let R be a commutative ring with identity and M an R-module. In this paper, we associate a graph to M, sayΓ(RM), such that when M=R, Γ(RM) coincide with the zero-divisor graph of R. Many well-known results by D.F. Anderson and P.S. Livingston have been generalized for Γ(RM). We Will show that Γ(RM) is connected withdiam Γ(RM)≤ 3 and if Γ(RM) contains a cycle, then Γ(RM)≤4. We will also show tha...

full text

The k-Zero-Divisor Hypergraph of a Commutative Ring

The concept of the zero-divisor graph of a commutative ring has been studied by many authors, and the k-zero-divisor hypergraph of a commutative ring is a nice abstraction of this concept. Though some of the proofs in this paper are long and detailed, any reader familiar with zero-divisors will be able to read through the exposition and find many of the results quite interesting. Let R be a com...

full text

My Resources

Save resource for easier access later


Journal title:
iranian journal of mathematical sciences and informatics

جلد ۱۲، شماره ۱، صفحات ۹۵-۱۰۶

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023