application of new basis functions for solving nonlinear stochastic differential equations

Authors

zahra sadati

department of mathematics, khomein branch, islamic azad university, khomein, iran

abstract

this paper presents an approach for solving a nonlinear stochastic differential equations (nsdes) using a new basis functions (nbfs). these functions and their operational matrices areused for representing matrix form of the nbfs. with using this method in combination with the collocation method, the nsdes are reduced a stochastic nonlinear system of equations and unknowns. then, the error analysis is proved. finally, numerical examples illustrate applicability and accuracy of the presented method.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Application of new basis functions for solving nonlinear stochastic differential equations

This paper presents an approach for solving a nonlinear stochastic differential equations (NSDEs) using a new basis functions (NBFs). These functions and their operational matrices are used for representing matrix form of the NBFs. With using this method in combination with the collocation method, the NSDEs are reduced a stochastic nonlinear system of equations and unknowns. Then, the error ana...

full text

application of new basis functions for solve nonlinear stochastic differential equations

this paper presents an approach for solving a nonlinear stochastic differential equations (nsdes) using a new basis functions (nbfs). these functions and their operational matrices areused for representing matrix form of the nbfs. with using this method in combination with the collocation method, the nsdes are reduced a stochastic nonlinear system of equations and unknowns. then, the error anal...

full text

The use of radial basis functions by variable shape parameter for solving partial differential equations

In this paper, some meshless methods based on the local Newton basis functions are used to solve some time dependent partial differential equations. For stability reasons, used variably scaled radial kernels for constructing Newton basis functions. In continuation, with considering presented basis functions as trial functions, approximated solution functions in the event of spatial variable wit...

full text

Gaussian basis functions for solving differential equations

We derive approximate numerical solutions for an ordinary differential equation common in engineering using two different types of basis functions, polynomial and Gaussian, and a maximum discrepancy error measure. We compare speed and accuracy of the two solutions. The basic finding for our example is that while Gaussian basis functions can be used, the computational effort is greater than that...

full text

Computational method based on triangular operational matrices for solving nonlinear stochastic differential equations

In this article, a new numerical method based on triangular functions for solving  nonlinear stochastic differential equations is presented. For this, the stochastic operational matrix of triangular functions for It^{o} integral are determined. Computation of presented method is very simple and attractive. In addition, convergence analysis and numerical examples that illustrate accuracy and eff...

full text

The Tau-Collocation Method for Solving Nonlinear Integro-Differential Equations and Application of a Population Model

This paper presents a computational technique that called Tau-collocation method for the developed solution of non-linear integro-differential equations which involves a population model. To do this, the nonlinear integro-differential equations are transformed into a system of linear algebraic equations in matrix form without interpolation of non-poly-nomial terms of equations. Then, using coll...

full text

My Resources

Save resource for easier access later


Journal title:
international journal of nonlinear analysis and applications

جلد ۷، شماره ۲، صفحات ۵۹-۶۸

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023