integral inequalities for submanifolds of hessian manifolds with constant hessian sectional curvature

Authors

m. bektas

abstract

in this paper, we obtain two intrinsic integral inequalities of hessian manifolds.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Isoperimetric-type inequalities on constant curvature manifolds

By exploiting optimal transport theory on Riemannian manifolds and adapting Gromov’s proof of the isoperimetric inequality in the Euclidean space, we prove an isoperimetric-type inequality on simply connected constant curvature manifolds.

full text

The curvature of a Hessian metric

In this paper, inspired by P.M.H. Wilson’s paper on sectional curvatures of Kähler moduli [31], we concentrate on the case where f is a homogeneous polynomial (also called a “form”) of degree d at least 2. Following Okonek and van de Ven [23], Wilson considers the “index cone,” the open subset where the Hessian matrix of f is Lorentzian (that is, of signature (1, ∗)) and f is positive. He restr...

full text

The Pontryagin Forms of Hessian Manifolds

We show that Hessian manifolds of dimensions 4 and above must have vanishing Pontryagin forms. This gives a topological obstruction to the existence of Hessian metrics. We find an additional explicit curvature identity for Hessian 4-manifolds. By contrast, we show that all analytic Riemannian 2-manifolds are Hessian.

full text

Estimating the Hessian by Back-propagating Curvature

In this work we develop Curvature Propagation (CP), a general technique for efficiently computing unbiased approximations of the Hessian of any function that is computed using a computational graph. At the cost of roughly two gradient evaluations, CP can give a rank-1 approximation of the whole Hessian, and can be repeatedly applied to give increasingly precise unbiased estimates of any or all ...

full text

Strictly Kähler-Berwald manifolds with constant‎ ‎holomorphic sectional curvature

In this paper‎, ‎the‎ ‎authors prove that a strictly Kähler-Berwald manifold with‎ ‎nonzero constant holomorphic sectional curvature must be a‎ Kähler manifold‎. 

full text

Higher order Hessian structures on manifolds

In this paper we define nth order Hessian structures on manifolds and study them. In particular, when n = 3, we make a detailed study and establish a one-to-one correspondence between third-order Hessian structures and a certain class of connections on the second-order tangent bundle of a manifold. Further, we show that a connection on the tangent bundle of a manifold induces a connection on th...

full text

My Resources

Save resource for easier access later


Journal title:
iranian journal of science and technology (sciences)

ISSN 1028-6276

volume 30

issue 2 2006

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023