numerics of stochastic parabolic differential equations with stable finite difference schemes

Authors

a.r. soheili

abstract

in the present article, we focus on the numerical approximation of stochastic partial differential equations of itˆo type with space-time white noise process, in particular, parabolic equations. for each case of additive andmultiplicative noise, the numerical solution of stochastic diffusion equations is approximated using two stochastic finite difference schemes and the stability and consistency conditions of the considered methods are analyzed. numerical results are given to demonstrate the computational efficiency of the stochastic methods.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Numerics of stochastic parabolic differential equations with stable finite difference schemes

In the present article, we focus on the numerical approximation of stochastic partial differential equations of Itˆo type with space-time white noise process, in particular, parabolic equations. For each case of additive and multiplicative noise, the numerical solution of stochastic diffusion equations is approximated using two stochastic finite difference schemes and the stability and consiste...

full text

APPROXIMATION OF STOCHASTIC PARABOLIC DIFFERENTIAL EQUATIONS WITH TWO DIFFERENT FINITE DIFFERENCE SCHEMES

We focus on the use of two stable and accurate explicit finite difference schemes in order to approximate the solution of stochastic partial differential equations of It¨o type, in particular, parabolic equations. The main properties of these deterministic difference methods, i.e., convergence, consistency, and stability, are separately developed for the stochastic cases.

full text

approximation of stochastic parabolic differential equations with two different finite difference schemes

we focus on the use of two stable and accurate explicit finite difference schemes in order to approximate the solution of stochastic partial differential equations of it¨o type, in particular, parabolic equations. the main properties of these deterministic difference methods, i.e., convergence, consistency, and stability, are separately developed for the stochastic cases.

full text

approximation of stochastic parabolic differential equations with two different finite difference schemes

we focus on the use of two stable and accurate explicit finite difference schemes in order to approximate the solution of stochastic partial differential equations of it¨o type, in particular, parabolic equations. the main properties of these deterministic difference methods, i.e., convergence, consistency, and stability, are separately developed for the stochastic cases.

full text

Nonstandard finite difference schemes for differential equations

In this paper, the reorganization of the denominator of the discrete derivative and nonlocal approximation of nonlinear terms are used in the design of nonstandard finite difference schemes (NSFDs). Numerical examples confirming then efficiency of schemes, for some differential equations are provided. In order to illustrate the accuracy of the new NSFDs, the numerical results are compared with ...

full text

nonstandard finite difference schemes for differential equations

in this paper, the reorganization of the denominator of the discrete derivative and nonlocal approximation of nonlinear terms are used in the design of nonstandard finite difference schemes (nsfds). numerical examples confirming then efficiency of schemes, for some differential equations are provided. in order toillustrate the accuracy of the new nsfds, the numerical results are compared with s...

full text

My Resources

Save resource for easier access later


Journal title:
iranian journal of science and technology (sciences)

ISSN 1028-6276

volume 36

issue 1 2012

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023