an lp-lq-version of morgan's theorem for the generalized fourier transform associated with a dunkl type operator

Authors

loualid el mehdi

university

abstract

the aim of this paper is to prove new quantitative uncertainty principle for the generalized fourier transform connected with a dunkl type operator on the real line. more precisely we prove an lp-lq-version of morgan's theorem.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

An Lp-Lq-version Of Morgan's Theorem For The Generalized Fourier Transform Associated with a Dunkl Type Operator

The aim of this paper is to prove new quantitative uncertainty principle for the generalized Fourier transform connected with a Dunkl type operator on the real line. More precisely we prove An Lp-Lq-version of Morgan's theorem.

full text

AN LP-LQ-VERSION OF MORGAN’S THEOREM FOR THE GENERALIZED BESSEL TRANSFORM

n this article, we prove An Lp-Lq-version of Morgan’s theorem for the generalized Bessel transform.

full text

an lp-lq-version of morgan’s theorem for the generalized bessel transform

n this article, we prove an lp-lq-version of morgan’s theorem for the generalized bessel transform.

full text

An Lp-Lq version of Hardy's theorem for spherical Fourier transform on semisimple Lie groups

We consider a real semisimple Lie group G with finite center and K a maximal compact subgroup of G. We prove an Lp −Lq version of Hardy’s theorem for the spherical Fourier transform on G. More precisely, let a, b be positive real numbers, 1 ≤ p, q ≤ ∞, and f a K-bi-invariant measurable function on G such that h−1 a f ∈ Lp(G) and eb‖λ‖ (f )∈ Lq(a∗ +) (ha is the heat kernel on G). We establish th...

full text

GENERALIZATION OF TITCHMARSH'S THEOREM FOR THE GENERALIZED FOURIER-BESSEL TRANSFORM

In this paper, using a generalized translation operator, we prove theestimates for the generalized Fourier-Bessel transform in the space L2 on certainclasses of functions.

full text

OPERATOR-VALUED Lq → Lp FOURIER MULTIPLIERS

Fourier multiplier theorems provides one of the most important tools in the study of partial differential equations and embedding theorems. They are very often used to establish maximal regularity of elliptic and parabolic differential operator equations. Operator–valued multiplier theorems in Banach–valued function spaces have been discussed extensively in [1, 2, 3, 5, 7, 8, 9, 10, 11, 12 ]. B...

full text

My Resources

Save resource for easier access later


Journal title:
international journal of mathematical modelling and computations

جلد ۶، شماره ۴ (Fall)، صفحات ۲۸۵-۲۹۰

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023