a robust rbf-ann model to predict the hot deformation flow curves of api x65 pipeline steel
Authors
abstract
abstract in this research, a radial basis function artificial neural network (rbf-ann) model was developed to predict the hot deformation flow curves of api x65 pipeline steel. the results of the developed model was compared with the results of a new phenomenological model that has recently been developed based on a power function of zener-hollomon parameter and a third order polynomial function of strain power m (m is a constant). root mean square error (rmse) criterion was used assess the prediction performance of the investigated models. according to the results obtained, it was shown that the rbf-ann model has a better performance than that of the investigated phenomenological model. very low rmse value of 0.41 mpa was obtained for rbf-ann model that shows the robustness of it to predict the hot deformation flow curves of tested steel. the results can be further used in mathematical simulation of hot metal forming processes.
similar resources
A Robust RBF-ANN Model to Predict the Hot Deformation Flow Curves of API X65 Pipeline Steel
Abstract In this research, a radial basis function artificial neural network (RBF-ANN) model was developed to predict the hot deformation flow curves of API X65 pipeline steel. The results of the developed model was compared with the results of a new phenomenological model that has recently been developed based on a power function of Zener-Hollomon parameter and a third order polynomial functio...
full textA Robust RBF-ANN Model to Predict the Hot Deformation Flow Curves of API X65 Pipeline Steel
In this research, a radial basis function artificial neural network (RBF-ANN) model was developed to predict the hot deformation flow curves of API X65 pipeline steel. The results of the developed model were compared with the results of a new phenomenological model that has recently been developed based on a power function of Zener-Hollomon parameter and a third order polynomial function of str...
full textMODELING THE HOT DEFORMATION FLOW CURVES OF API X65 PIPELINE STEEL USING THE POWER LAW EQUATION
Till now, different constitutive models have been applied to model the hot deformation flow curves of different materials. In this research, the hot deformation flow stress of API X65 pipeline steel was modeled using the power law equation with strain dependent constants. The results was compared with the results of the other previously examined constitutive equations including the Arrhenius eq...
full textA SVM model to predict the hot deformation flow curves of AZ91 magnesium alloy
Abstract In this work, a support vector machine (SVM) model was developed to predict the hot deformation flow curves of AZ91 magnesium alloy. The experimental stress-strain curves, obtained from hot compression testing at different deformation conditions, were sampled. Consequently, a data base with the input variables of the deformation temperature, strain rate and strain and the output variab...
full textA comparative study on constitutive modeling of hot deformation flow curves in AZ91 magnesium alloy
Modeling the flow curves of materials at elevated temperatures is the first step in mathematical simulation of the hot deformation processes of them. In this work a comparative study was provided to examine the capability of three different constitutive equations in modeling the hot deformation flow curves of AZ91 magnesium alloy. For this, the Arrhenius equation with strain dependent constants...
full textNeural Network Prediction of Warm Deformation Flow Curves in Ferrite+ Cementite Region
Many efforts have been made to model the the hot deformation (dynamic recrystallization) flow curves of different materials. Phenomenological constitutive models, physical-based constitutive models and artificial neural network (ANN) models are the main methods used for this purpose. However, there is no report on the modeling of warm deformation (dynamic spheroidization) flow curves of any kin...
full textMy Resources
Save resource for easier access later
Journal title:
iranian journal of materials formingجلد ۴، شماره ۱، صفحات ۱۲-۲۰
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023