free and forced transverse vibration analysis of moderately thick orthotropic plates using spectral finite element method

Authors

m.r bahrami

civil engineering department, yasouj university, yasouj, iran s hatami

civil engineering department, yasouj university, yasouj, iran

abstract

in the present study, a spectral finite element method is developed for free and forced transverse vibration of levy-type moderately thick rectangular orthotropic plates based on first-order shear deformation theory. levy solution assumption was used to convert the two-dimensional problem into a one-dimensional problem. in the first step, the governing out-of-plane differential equations are transformed from time domain into frequency domain by discrete fourier transform theory. then, the spectral stiffness matrix is formulated, using frequency-dependent dynamic shape functions which are obtained from the exact solution of the governing differential equations. an efficient numerical algorithm, using drawing method is used to extract the natural frequencies. the frequency domain dynamic responses are obtained from solution of the spectral element equation. also, the time domain dynamic responses are derived by using inverse discrete fourier transform algorithm. the accuracy and excellent performance of the spectral finite element method is then compared with the results obtained from closed form solution methods in previous studies. finally, comprehensive results for out-of-plane natural frequencies and transverse displacement of the moderately thick rectangular plates with six different combinations of boundary conditions are presented. these results can serve as a benchmark to compare the accuracy and precision of the numerical methods used.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Free and Forced Transverse Vibration Analysis of Moderately Thick Orthotropic Plates Using Spectral Finite Element Method

In the present study, a spectral finite element method is developed for free and forced transverse vibration of Levy-type moderately thick rectangular orthotropic plates based on first-order shear deformation theory. Levy solution assumption was used to convert the two-dimensional problem into a one-dimensional problem. In the first step, the governing out-of-plane differential equations are tr...

full text

Free Vibration Analysis of Moderately Thick Functionally Graded Plates with Multiple Circular and Square Cutouts Using Finite Element Method

A simple formulation for studying the free vibration of shear-deformable functionally graded plates of different shapes with different cutouts using the finite element method is presented. The aim is to fill the void in the available literature with respect to the free vibration results of functionally graded plates of different shapes with different cutouts. The material properties of the plat...

full text

Free Vibration Analysis of Moderately Thick Orthotropic Functionally Graded Plates with General Boundary Restraints

In this paper, a modified Fourier series method is presented for the free vibration of moderately thick orthotropic functionally graded plates with general boundary restraints based on the first-order shear deformation theory. Regardless of boundary restraints, displacements and rotations of each plate are described as an improved form of double Fourier cosine series and several closed-form aux...

full text

Element free Galerkin method for crack analysis of orthotropic plates

A new approach for analyzing cracked problems in 2D orthotropic materials using the well-known element free Galerkin method and orthotropic enrichment functions is proposed. The element free Galerkin method is a meshfree method which enables discontinuous problems to be modeled efficiently. In this study, element free Galerkin is extrinsically enriched by the recently developed crack-tip orthot...

full text

buckling of viscoelastic composite plates using the finite strip method

در سال های اخیر، تقاضای استفاده از تئوری خطی ویسکوالاستیسیته بیشتر شده است. با افزایش استفاده از کامپوزیت های پیشرفته در صنایع هوایی و همچنین استفاده روزافزون از مواد پلیمری، اهمیت روش های دقیق طراحی و تحلیل چنین ساختارهایی بیشتر شده است. این مواد جدید از خودشان رفتارهای مکانیکی ارائه می دهند که با تئوری های الاستیسیته و ویسکوزیته، نمی توان آن ها را توصیف کرد. این مواد، خواص ویسکوالاستیک دارند....

Dynamic Stiffness Method for Free Vibration of Moderately Thick Functionally Graded Plates

In this study, a dynamic stiffness method for free vibration analysis of moderately thick function-ally graded material plates is developed. The elasticity modulus and mass density of the plate are assumed to vary according to a power-law distribution in terms of the volume fractions of the constituents whereas Poisson’s ratio is constant. Due to the variation of the elastic properties through ...

full text

My Resources

Save resource for easier access later


Journal title:
journal of solid mechanics

جلد ۸، شماره ۴، صفحات ۸۹۵-۹۱۵

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023