a meshless technique for nonlinear volterra-fredholm integral equations via hybrid of radial basis functions
Authors
abstract
in this paper, an effective technique is proposed to determine thenumerical solution of nonlinear volterra-fredholm integralequations (vfies) which is based on interpolation by the hybrid ofradial basis functions (rbfs) including both inverse multiquadrics(imqs), hyperbolic secant (sechs) and strictly positive definitefunctions. zeros of the shifted legendre polynomial are used asthe collocation points to set up the nonlinear systems. theintegrals involved in the formulation of the problems areapproximated based on legendre-gauss-lobatto integration rule.this technique is so convenience to implement and yields veryaccurate results compared with the other basis. in addition aconvergence theorem is proved to show the stability of thistechnique. illustrated examples are included to confirm thevalidity and applicability of the proposed method. the comparisonof the errors is implemented by the other methods in referencesusing both inverse multiquadrics (imqs), hyperbolic secant (sechs)and strictly positive definite functions.
similar resources
A meshless technique for nonlinear Volterra-Fredholm integral equations via hybrid of radial basis functions
In this paper, an effective technique is proposed to determine thenumerical solution of nonlinear Volterra-Fredholm integralequations (VFIEs) which is based on interpolation by the hybrid ofradial basis functions (RBFs) including both inverse multiquadrics(IMQs), hyperbolic secant (Sechs) and strictly positive definitefunctions. Zeros of the shifted Legendre polynomial are used asthe collocatio...
full textA meshless method for optimal control problem of Volterra-Fredholm integral equations using multiquadratic radial basis functions
In this paper, a numerical method is proposed for solving optimal control problem of Volterra integral equations using radial basis functions (RBFs) for approximating unknown function. Actually, the method is based on interpolation by radial basis functions including multiquadrics (MQs), to determine the control vector and the corresponding state vector in linear dynamic system while minimizing...
full textThe method of radial basis functions for the solution of nonlinear Fredholm integral equations system.
In this paper, An effective and simple numerical method is proposed for solving systems of integral equations using radial basis functions (RBFs). We present an algorithm based on interpolation by radial basis functions including multiquadratics (MQs), using Legendre-Gauss-Lobatto nodes and weights. Also a theorem is proved for convergence of the algorithm. Some numerical examples are presented...
full textSolution of Nonlinear Fredholm-Volterra Integral Equations via Block-Pulse Functions
In this paper, a new simple direct method to solve nonlinear Fredholm-Volterra integral equations is presented. By using Block-pulse (BP) functions, their operational matrices and Taylor expansion a nonlinear Fredholm-Volterra integral equation converts to a nonlinear system. Some numerical examples illustrate accuracy and reliability of our solutions. Also, effect of noise shows our solutions ...
full textA computational method for nonlinear mixed Volterra-Fredholm integral equations
In this article the nonlinear mixed Volterra-Fredholm integral equations are investigated by means of the modied three-dimensional block-pulse functions (M3D-BFs). This method converts the nonlinear mixed Volterra-Fredholm integral equations into a nonlinear system of algebraic equations. The illustrative examples are provided to demonstrate the applicability and simplicity of our scheme.
full textNumerical solution of nonlinear Volterra-Fredholm-Hammerstein integral equations via collocation method based on radial basis functions
In this paper a numerical technique is presented for the solution of fuzzy linear Volterra-Fredholm-Hammerstein integral equations. This method is a combination of collocation method and radial basis functions(RBFs).We first solve the actual set are equivalent to the fuzzy set, then answer 1-cut into the equation. Also high convergence rates and good accuracy are obtain with the propose method ...
full textMy Resources
Save resource for easier access later
Journal title:
نظریه تقریب و کاربرد های آنجلد ۱۰، شماره ۲، صفحات ۴۳-۵۹
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023