using mgarch to estimate value at risk

Authors

محمد رضا رستمی

استادیار مدیریت مالی، دانشگاه الزهرا، تهران ، ایران فاطمه حقیقی

کارشناس ارشد مدیریت بازرگانی گرایش مالی، دانشگاه الزهرا (س)، تهران، ایران

abstract

in this paper we compared multivariate garch models toestimate value-at-risk. we used a portfolio of weekly indexesincluding tedpix, klse, xu100 during ten years. to estimatevalue-at-risk, first we estimated ccc, dcc of engle, dcc of tseand tsui, dynamic equi correlation models by oxmetrics. then,optimum lags were estimated by minimizing the information criteria.to estimate var, the models accuracy was validated by usingvariance-covariance matrix. the results show that although cccmodel estimates variance matrix better, dynamic equi correlation ispreferable to estimate value-at-risk, employing more completecorrelation matrix.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Using Extreme Value Theory to Estimate Value-at-Risk

Martin Odening and Jan Hinrichs Abstract: This article examines problems that may occur when conventional Value-at-Risk (VaR) estimators are used to quantify market risks in an agricultural context. For example, standard VaR methods, such as variance-covariance method or historical simulation, can fail when the return distribution is fat tailed. This problem is aggravated when long-term VaR for...

full text

Can we use kernel smoothing to estimate Value at Risk and Tail Value at Risk?

In this paper we analyse nonparametric methods to estimate risk measures in loss distributions. We study kernel estimation for Value-at-Risk and Tail Value-at-Risk based on transformation of the original data. The proposed method consists of a double transformation kernel estimation. We show that a suitable bandwidth selection criterion has a direct expression for the optimal smoothing paramete...

full text

Using Exponentially Weighted Quantile Regression to Estimate Value at Risk and Expected Shortfall

We propose exponentially weighted quantile regression (EWQR) for estimating time-varying quantiles. The EWQR cost function can be used as the basis for estimating the time-varying expected shortfall associated with the EWQR quantile forecast. We express EWQR in a kernel estimation framework, and then modify it by adapting a previously proposed double kernel estimator in order to provide greater...

full text

Using Conditional Copula to Estimate Value-at-Risk in Vietnam's Foreign Exchange Market

In this paper, we briefly review the basics of copula theory and the problem of estimating Value at Risk (VaR) of portfolio composed by several assets. We present two VaR estimation models in which each return series is assumed to follow AR(1)-GARCH(1, 1) model and the innovations are simultaneously generated using Gaussian copula and Student t copula. The presented models are applied to estima...

full text

Value at Risk Estimation using the Kappa Distribution with Application to Insurance Data

The heavy tailed distributions have mostly been used for modeling the financial data. The kappa distribution has higher peak and heavier tail than the normal distribution. In this paper, we consider the estimation of the three unknown parameters of a Kappa distribution for evaluating the value at risk measure. The value at risk (VaR) as a quantile of a distribution is one of the import...

full text

conditional copula-garch methods for value at risk of portfolio: the case of tehran stock exchange market

ارزش در معرض ریسک یکی از مهمترین معیارهای اندازه گیری ریسک در بنگاه های اقتصادی می باشد. برآورد دقیق ارزش در معرض ریسک موضوع بسیارمهمی می باشد و انحراف از آن می تواند موجب ورشکستگی و یا عدم تخصیص بهینه منابع یک بنگاه گردد. هدف اصلی این مطالعه بررسی کارایی روش copula-garch شرطی در برآورد ارزش در معرض ریسک پرتفویی متشکل از دو سهام می باشد و ارزش در معرض ریسک بدست آمده با روشهای سنتی برآورد ارزش د...

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023