annihilator-small submodules

Authors

t. amouzegar kalati

mazandaran university, department of mathematic d. keskin tutuncu

hacettepe university, mathematics department

abstract

let $m_r$ be a module with $s=end(m_r)$. we call a submodule $k$ of $m_r$ annihilator-small if $k+t=m$, $t$ a submodule of $m_r$, implies that $ell_s(t)=0$, where $ell_s$ indicates the left annihilator of $t$ over $s$. the sum $a_r(m)$ of all such submodules of $m_r$ contains the jacobson radical $rad(m)$ and the left singular submodule $z_s(m)$. if $m_r$ is cyclic, then $a_r(m)$ is the unique largest annihilator-small submodule of $m_r$. we study $a_r(m)$ and $k_s(m)$ in this paper. conditions when $a_r(m)$ is annihilator-small and $k_s(m)=j(s)=tot(m, m)$ are given.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Annihilator-small submodules

Let $M_R$ be a module with $S=End(M_R)$. We call a submodule $K$ of $M_R$ annihilator-small if $K+T=M$, $T$ a submodule of $M_R$, implies that $ell_S(T)=0$, where $ell_S$ indicates the left annihilator of $T$ over $S$. The sum $A_R(M)$ of all such submodules of $M_R$ contains the Jacobson radical $Rad(M)$ and the left singular submodule $Z_S(M)$. If $M_R$ is cyclic, then $A_R(M)$ is the unique ...

full text

Annihilator-small Right Ideals

A right ideal A of a ring R is called annihilator-small if A+ T = R; T a right ideal, implies that l(T ) = 0; where l( ) indicates the left annihilator. The sum Ar of all such right ideals turns out to be a two-sided ideal that contains the Jacobson radical and the left singular ideal, and is contained in the ideal generated by the total of the ring. The ideal Ar is studied, conditions when it ...

full text

Modules Whose Small Submodules Have Krull Dimension

The main aim of this paper is to show that an AB5 module whose small submodules have Krull dimension has a radical having Krull dimension. The proof uses the notion of dual Goldie dimension.

full text

Small submodules with respect to an arbitrary submodule

Let $R$ be an arbitrary ring and $T$ be a submodule of an $R$-module $M$. A submodule $N$ of $M$ is called $T$-small in $M$ provided for each submodule $X$ of $M$, $Tsubseteq X+N$ implies that $Tsubseteq X$. We study this mentioned notion which is a generalization of the small submodules and we obtain some related results.

full text

My Resources

Save resource for easier access later


Journal title:
bulletin of the iranian mathematical society

جلد ۳۹، شماره ۶، صفحات ۱۰۵۳-۱۰۶۳

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023