infinitely many solutions for a bi-nonlocal equation with sign-changing weight functions
Authors
abstract
in this paper, we investigate the existence of infinitely many solutions for a bi-nonlocal equation with sign-changing weight functions. we use some natural constraints and the ljusternik-schnirelman critical point theory on c1-manifolds, to prove our main results.
similar resources
Infinitely many solutions for a bi-nonlocal equation with sign-changing weight functions
In this paper, we investigate the existence of infinitely many solutions for a bi-nonlocal equation with sign-changing weight functions. We use some natural constraints and the Ljusternik-Schnirelman critical point theory on C1-manifolds, to prove our main results.
full textMultiplicity of Positive Solutions of laplacian systems with sign-changing weight functions
In this paper, we study the multiplicity of positive solutions for the Laplacian systems with sign-changing weight functions. Using the decomposition of the Nehari manifold, we prove that an elliptic system has at least two positive solutions.
full textInfinitely many solutions for a class of $p$-biharmonic equation in $mathbb{R}^N$
Using variational arguments, we prove the existence of infinitely many solutions to a class of $p$-biharmonic equation in $mathbb{R}^N$. The existence of nontrivial solution is established under a new set of hypotheses on the potential $V(x)$ and the weight functions $h_1(x), h_2(x)$.
full textInfinitely Many Solutions for Fractional Schrödinger-poisson Systems with Sign-changing Potential
In this article, we prove the existence of multiple solutions for following fractional Schrödinger-Poisson system with sign-changing potential (−∆)u+ V (x)u+ λφu = f(x, u), x ∈ R, (−∆)φ = u, x ∈ R, where (−∆)α denotes the fractional Laplacian of order α ∈ (0, 1), and the potential V is allowed to be sign-changing. Under certain assumptions on f , we obtain infinitely many solutions for this sys...
full textInfinitely Many Solutions for Elliptic Boundary Value Problems with Sign-changing Potential
In this article, we study the elliptic boundary value problem −∆u + a(x)u = g(x, u) in Ω,
full textMy Resources
Save resource for easier access later
Journal title:
bulletin of the iranian mathematical societyجلد ۴۲، شماره ۳، صفحات ۶۱۱-۶۲۶
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023