infinitely many solutions for a bi-nonlocal‎ ‎equation with sign-changing weight functions

Authors

y. jalilian

department of mathematics‎, ‎razi university‎, ‎kermanshah‎, ‎iran.

abstract

in this paper, we investigate the existence of infinitely many solutions for a bi-nonlocal equation with sign-changing weight functions. we use some natural constraints and the ljusternik-schnirelman critical point theory on c1-manifolds, to prove our main results.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Infinitely many solutions for a bi-nonlocal‎ ‎equation with sign-changing weight functions

In this paper, we investigate the existence of infinitely many solutions for a bi-nonlocal equation with sign-changing weight functions. We use some natural constraints and the Ljusternik-Schnirelman critical point theory on C1-manifolds, to prove our main results.

full text

Multiplicity of Positive Solutions of laplacian systems with sign-changing weight functions

In this paper, we study the multiplicity of positive solutions for the Laplacian systems with sign-changing weight functions. Using the decomposition of the Nehari manifold, we prove that an elliptic system has at least two positive solutions.

full text

Infinitely many solutions for a class of $p$-biharmonic‎ ‎equation in $mathbb{R}^N$

‎Using variational arguments‎, ‎we prove the existence of infinitely‎ ‎many solutions to a class of $p$-biharmonic equation in‎ ‎$mathbb{R}^N$‎. ‎The existence of‎ ‎nontrivial‎ ‎solution is established under a new‎ ‎set of hypotheses on the potential $V(x)$ and the weight functions‎ ‎$h_1(x)‎, ‎h_2(x)$‎.

full text

Infinitely Many Solutions for Fractional Schrödinger-poisson Systems with Sign-changing Potential

In this article, we prove the existence of multiple solutions for following fractional Schrödinger-Poisson system with sign-changing potential (−∆)u+ V (x)u+ λφu = f(x, u), x ∈ R, (−∆)φ = u, x ∈ R, where (−∆)α denotes the fractional Laplacian of order α ∈ (0, 1), and the potential V is allowed to be sign-changing. Under certain assumptions on f , we obtain infinitely many solutions for this sys...

full text

Infinitely Many Solutions for Elliptic Boundary Value Problems with Sign-changing Potential

In this article, we study the elliptic boundary value problem −∆u + a(x)u = g(x, u) in Ω,

full text

My Resources

Save resource for easier access later


Journal title:
bulletin of the iranian mathematical society

جلد ۴۲، شماره ۳، صفحات ۶۱۱-۶۲۶

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023