مقایسه عملکرد درخت تصمیم گیری و شبکه عصبی در پیشگویی ابتلا به آنفارکتوس قلبی
Authors
abstract
هدف: بیماری های قلبی عروقی از شایع ترین بیماری ها در تمامی جوامع می باشد. استفاده از تکنیک های داده کاوی برای ایجاد مدل های پیش گویی کننده، جهت شناسایی افراد در معرض خطر برای کاهش عوارض ناشی از بیماری بسیار کمک کننده است. هدف اصلی این مطالعه پیشگویی احتمال ابتلا افراد به آنفارکتوس قلبی با استفاده از درخت تصمیم بر اساس ریسک فاکتورهای موثر بر ابتلاست. روش بررسی: این پژوهش از نوع تحلیلی بوده و پایگاه داده آن شامل 350 رکورد می باشد. داده های مورد نیاز این تحقیق در سال 1390با استفاده از جدول مورگان از بین پرونده بیماران مراجعه کننده به بیمارستان شهید رجایی تهران بدست آمده است ابزار جمع آوری داده ها چک لیستی چهار قسمتی بوده است.تجزیه و تحلیل به کمک نرم افزار spss clementine 12 با بکارگیری متدولوژی (cross industry standard process for data mining; crisp) انجام شده است. در بخش مدل سازی از درخت تصمیم و شبکه عصبی استفاده شده است. یافته ها: با توجه به مدل های استفاده شده مشخص شد که به ترتیب متغیرهای فشارخون بالا، چربی خون بالا و مصرف سیگار، بیشترین تاثیر را در ابتلا به آنفارکتوس قلبی دارا بودند. به کمک درخت تصمیم ایجاد شده، قوانینی استخراج شده است که می تواند به عنوان الگویی در جهت پیشگویی احتمال ابتلا افراد به آنفارکتوس قلبی استفاده شود. صحت مدل ایجاد شده با استفاده از درخت تصمیم 93/4 درصد بوده است. نتیجه گیری: بهترین مدل ایجاد شده درخت تصمیم c5 بود. با بکارگیری قوانین ایجاد شده برای یک نمونه جدید با ویژگیهای مشخص می توان تعیین کرد که احتمال ابتلا به آنفارکتوس قلبی چقدر است. 1cross industry standard process for data mining
similar resources
داده کاوی بر پایه روشهای شبکه عصبی و درخت تصمیم در تشخیص زود هنگام ریسک ابتلا به دیابت بارداری
مقدمه: امروزه در دنیای مدرن صنعتی خطر ابتلا به بیماریهای مزمن به طرز چشمگیری افزایش یافته است. دیابت بارداری یکی از مسائل مهم در حوزه سلامت است و در صورتی که درمان نشود مشکلات و عوارض جانبی متعددی برای مادر و فرزندش به همراه دارد. این پژوهش به دنبال پیشبینی ریسک و هشدار به موقع در ابتلا به دیابت بارداری به مادر میباشد تا در اوایل بارداری از ابتلا جلوگیری به عمل آید. روش: این پژوهش که به صورت...
full textداده کاوی بر پایه روشهای شبکه عصبی و درخت تصمیم در تشخیص زود هنگام ریسک ابتلا به دیابت بارداری
مقدمه: امروزه در دنیای مدرن صنعتی خطر ابتلا به بیماریهای مزمن به طرز چشمگیری افزایش یافته است. دیابت بارداری یکی از مسائل مهم در حوزه سلامت است و در صورتی که درمان نشود مشکلات و عوارض جانبی متعددی برای مادر و فرزندش به همراه دارد. این پژوهش به دنبال پیشبینی ریسک و هشدار به موقع در ابتلا به دیابت بارداری به مادر میباشد تا در اوایل بارداری از ابتلا جلوگیری به عمل آید. روش: این پژوهش که به صورت...
full textمقایسه تأثیر وضعیت طاق باز و دمر بر وضعیت تنفسی نوزادان نارس مبتلا به سندرم دیسترس تنفسی حاد تحت درمان با پروتکل Insure
کچ ی هد پ ی ش مز ی هن ه و فد : ساسا د مردنس رد نامرد ي سفنت سرتس ي ظنت نادازون داح ي سکا لدابت م ي و نژ د ي سکا ي د هدوب نبرک تسا طسوت هک کبس اـه ي ناـمرد ي فلتخم ي هلمجزا لکتورپ INSURE ماجنا م ي دوش ا اذل . ي هعلاطم ن فدهاب اقم ي هس عضو ي ت اه ي ندب ي عضو رب رمد و زاب قاط ي سفنت ت ي هـب لاتـبم سراـن نادازون ردنس د م ي سفنت سرتس ي لکتورپ اب نامرد تحت داح INSURE ماجنا درگ ...
full textکاربرد شبکه های عصبی مصنوعی در تصمیم گیری راهبردی
در این مقاله سعی شده است علاوه بر ارایه مطالب جدید در زمینه شبکه های عصبی مصنوعی، کاربرد آن در تصمیم گیری راهبردی مدیران ارایه شود. در اینجا شبکه های عصبی مصنوعی برای اجرای یک مدول تصمیم در چارچوب تصمیم گیری راهبردی مورد بررسی قرار گرفته است. این مقاله چگونگی بکارگیری و پذیرش شبکه های عصبی در چارچوب تصمیم گیری راهبردی را توصیف می کند. در بخش اول مختصری از ادبیات شبکه های عصبی مصنوعی و در بخش دو...
full textمقایسه ی روش های شبکه عصبی مصنوعی، ماشین بردار پشتیبان و درخت تصمیم گیری در شناسایی ابر در تصاویر ماهواره ای لندست 8
مقالهی پیشرو به مقایسهی سه روش ماشین بردار پشتیان،شبکهی عصبی مصنوعی و درخت تصمیم گیری با هدف شناسایی ابر میپردازد. وجود ابر در تصاویر ماهوارهای اپتیکی، پیشپردازشهای رادیومتریکی در کاربردهای سنجش از دور را ایجاب میکند. معمولا شناسایی ابر در تصاویر ماهوارهای با استفاده از روشهای طبقهبندی نظارت شده امکان پذیر میباشد. در این مقاله تصاویر ماهوارهای لندست 8 از دو منطقهی واقع در رشتهک...
full textMy Resources
Save resource for easier access later
Journal title:
علوم پیراپزشکی و توانبخشیجلد ۳، شماره ۲، صفحات ۲۶-۳۵
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023