Multiscale carbon structures fabricated by direct micropatterning of electrospun mats of SU-8 photoresist nanofibers.

نویسندگان

  • Chandra S Sharma
  • Ashutosh Sharma
  • Marc Madou
چکیده

A novel method for the direct fabrication of arrays of micropatterned polymeric and carbon nanofiber structures on any substrate is developed. First SU-8, an epoxy-based negative photoresist, is electrospun under optimized conditions to produce a layer of polymeric nanofibers. Next, this nanofibrous mat is micropatterned using photolithography, and finally, pyrolysis produces ordered arrays of microdomains containing carbon nanofibers. The nanotextured surfaces of carbon nanofibers are shown to be very hydrophobic (water contact angle approximately 130 degrees). Micropatterning thus generates a substantial wettability contrast of nanofiber domains with intervening micropatches of very hydrophilic carbon (approximately 20 degrees) or silicon substrates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication and electrical conductivity of suspended carbon nanofiber arrays

We demonstrate a simple, efficient and novel self-assembly based method to fabricate arrays of suspended polymeric nanofibers of polyacrylonitrile and SU-8 negative photoresist by electrospinning on micro-fabricated posts of resorcinol–formaldehyde (RF) gel. The suspended electrospun nanofibers together with the RF gel posts were subsequently pyrolyzed in an inert atmosphere to yield large area...

متن کامل

Ultrasensitive, Label Free, Chemiresistive Nanobiosensor Using Multiwalled Carbon Nanotubes Embedded Electrospun SU-8 Nanofibers

This paper reports the synthesis and fabrication of aligned electrospun nanofibers derived out of multiwalled carbon nanotubes (MWCNTs) embedded SU-8 photoresist, which are targeted towards ultrasensitive biosensor applications. The ultrasensitivity (detection in the range of fg/mL) and the specificity of these biosensors were achieved by complementing the inherent advantages of MWCNTs such as ...

متن کامل

Antitumor Activity of Doxorubicin-Loaded Carbon Nanotubes Incorporated Poly(Lactic-Co-Glycolic Acid) Electrospun Composite Nanofibers

The drug-loaded composite electrospun nanofiber has attracted more attention in biomedical field, especially in cancer therapy. In this study, a composite nanofiber was fabricated by electrospinning for cancer treatment. Firstly, the carbon nanotubes (CNTs) were selected as carriers to load the anticancer drug-doxorubicin (DOX) hydrochloride. Secondly, the DOX-loaded CNTs (DOX@CNTs) were incorp...

متن کامل

The effect of electrospun poly(lactic acid) and nanohydroxyapatite nanofibers’ diameter on proliferation and differentiation of mesenchymal stem cells

Objective(s): Electrospun nanofibrous mats of poly(lactic acid) (PLA) and nanohydroxyapatite (nano-HA) were prepared and proliferation and differentiation of mesenchymal stem cells on the prepared nanofibers were investigated in this study. Materials and Methods: PLA/nano-HA nanofibers were prepared by electrospinning. The effects of process parameters, such as nano-HA concentration, distance, ...

متن کامل

Preparation of antibacterial electrospun Poly lactic-co–glycolic acid nanofibers containing Hypericum Perforatum with bedsore healing property and evaluation of its drug release performance

Skin drug delivery systems with controlled release are suitable means for the local transfer of pharmaceutical compounds to the damaged and healthy layers of skin. Nanofibrous membrane prepares uniform moisture in the wound environment with less accumulation of fluid secretion due to its variable pore size. Electrospinning takes advantage of using herbal extracts in the form of electrospun nano...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Langmuir : the ACS journal of surfaces and colloids

دوره 26 4  شماره 

صفحات  -

تاریخ انتشار 2010