A flexible ratio regression approach for zero-truncated capture-recapture counts.
نویسندگان
چکیده
Capture-recapture methods are used to estimate the size of a population of interest which is only partially observed. In such studies, each member of the population carries a count of the number of times it has been identified during the observational period. In real-life applications, only positive counts are recorded, and we get a truncated at zero-observed distribution. We need to use the truncated count distribution to estimate the number of unobserved units. We consider ratios of neighboring count probabilities, estimated by ratios of observed frequencies, regardless of whether we have a zero-truncated or an untruncated distribution. Rocchetti et al. (2011) have shown that, for densities in the Katz family, these ratios can be modeled by a regression approach, and Rocchetti et al. (2014) have specialized the approach to the beta-binomial distribution. Once the regression model has been estimated, the unobserved frequency of zero counts can be simply derived. The guiding principle is that it is often easier to find an appropriate regression model than a proper model for the count distribution. However, a full analysis of the connection between the regression model and the associated count distribution has been missing. In this manuscript, we fill the gap and show that the regression model approach leads, under general conditions, to a valid count distribution; we also consider a wider class of regression models, based on fractional polynomials. The proposed approach is illustrated by analyzing various empirical applications, and by means of a simulation study.
منابع مشابه
A generalization of Chao's estimator for covariate information.
This note generalizes Chao's estimator of population size for closed capture-recapture studies if covariates are available. Chao's estimator was developed under unobserved heterogeneity in which case it represents a lower bound of the population size. If observed heterogeneity is available in form of covariates we show how this information can be used to reduce the bias of Chao's estimator. The...
متن کاملRatio plot and ratio regression with applications to social and medical sciences
We consider count data modeling, in particular, the zerotruncated case as it arises naturally in capture-recapture modeling as the marginal distribution of the count of identifications of the members of a target population. Whereas in wildlife ecology these distributions are often of a well-defined type, this is less the case for social and medical science applications since study types are oft...
متن کاملAn extension of an over-dispersion test for count data
While over-dispersion in capture–recapture studies is well known to lead to poor estimation of population size, current diagnostic tools to detect the presence of heterogeneity have not been specifically developed for capture–recapture studies. To address this, a simple and efficient method of testing for over-dispersion in zero-truncated count data is developed and evaluated. The proposed meth...
متن کاملEstimating infectious diseases incidence: validity of capture-recapture analysis and truncated models for incomplete count data.
Capture-recapture analysis has been used to evaluate infectious disease surveillance. Violation of the underlying assumptions can jeopardize the validity of the capture-recapture estimates and a tool is needed for cross-validation. We re-examined 19 datasets of log-linear model capture-recapture studies on infectious disease incidence using three truncated models for incomplete count data as al...
متن کاملMaximum penalized likelihood estimation in semiparametric capture-recapture models
We consider a semiparametric modeling approach for capture-recapture-recovery data where the temporal and/or individual variation of model parameters – usually the demographic parameters – is explained via covariates. Typically, in such analyses a fixed (or mixed) effects parametric model is specified for the relationship between the model parameters and the covariates of interest. In this pape...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biometrics
دوره 72 3 شماره
صفحات -
تاریخ انتشار 2016