Financial forecasting using ANFIS networks with Quantum-behaved Particle Swarm Optimization
نویسندگان
چکیده
To be successful in financial market trading it is necessary to correctly predict future market trends. Most professional traders use technical analysis to forecast future market prices. In this paper, we present a new hybrid intelligent method to forecast financial time series, especially for the Foreign Exchange Market (FX). To emulate the way real traders make predictions, this method uses both historical market data and chart patterns to forecast market trends. First, wavelet full decomposition of time series analysis was used as an Adaptive Network-based Fuzzy Inference System (ANFIS) input data for forecasting future market prices. Also, Quantum-behaved Particle Swarm Optimization (QPSO) for tuning the ANFIS membership functions has been used. The second part of this paper proposes a novel hybrid Dynamic Time Warping (DTW)-Wavelet Transform (WT) method for automatic pattern extraction. The results indicate that the presented hybrid method is a very useful and effective one for financial price forecasting and financial pattern extraction. 2014 Elsevier Ltd. All rights reserved.
منابع مشابه
OPTIMUM SHAPE DESIGN OF DOUBLE-LAYER GRIDS BY QUANTUM BEHAVED PARTICLE SWARM OPTIMIZATION AND NEURAL NETWORKS
In this paper, a methodology is presented for optimum shape design of double-layer grids subject to gravity and earthquake loadings. The design variables are the number of divisions in two directions, the height between two layers and the cross-sectional areas of the structural elements. The objective function is the weight of the structure and the design constraints are some limitations on str...
متن کاملAn Integrated Support Vector Machineand Quantum Behaved Particle Swarm Optimization Algorithm for Groundwater Level Forecasting
Groundwater level prediction in a water basin plays a significant role in the management of groundwater resources. Aground water level forecasting system is developed in this study using Support vector Machines (SVM). Further Quantum behaved Particle Swarm Optimization (QPSO) function is employed in this study to determine the SVM parameters. Later, the proposed SVM-QPSO model is used in determ...
متن کاملStreamflow forecasting by SVM with quantum behaved particle swarm optimization
Accurate forecasting of streamflows has been one of the most important issues as it plays a key role in allotment of water resources. However, the information of streamflow presents a challenging situation; the streamflow forecasting involves a rather complex nonlinear data pattern. In the recent years, the support vector machine has been used widely to solve nonlinear regression and time serie...
متن کاملDaily Reservoir Runoff Forecasting Method Using Artificial Neural Network Based on Quantum-behaved Particle Swarm Optimization
Accurate daily runoff forecasting is of great significance for the operation control of hydropower station and power grid. Conventional methods including rainfall-runoff models and statistical techniques usually rely on a number of assumptions, leading to some deviation from the exact results. Artificial neural network (ANN) has the advantages of high fault-tolerance, strong nonlinear mapping a...
متن کاملTraining neural networks for financial forecasting: Backpropagation vs Particle Swarm Optimization
Neural networks (NN) architectures can be effectively used to classify, forecast and recognize quantity of interest in, e.g., computer vision, machine translation, finance, etc. Concerning the financial framework, forecasting procedures are often used as a part of the decision making process in both trading and portfolio strategy optimization. Unfortunately training a NN is in general a challen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Expert Syst. Appl.
دوره 41 شماره
صفحات -
تاریخ انتشار 2014