On the smoothness of real-valued functions generated by subdivision schemes using nonlinear binary averaging

نویسندگان

  • Ron Goldman
  • E. Vouga
  • Scott Schaefer
چکیده

Our main result is that two point interpolatory subdivision schemes using C nonlinear averaging rules on pairs of real numbers generate real-valued functions that are also C. The significance of this result is the following consequence: Suppose that S is a subdivision algorithm operating on sequences of real numbers using linear binary averaging that generates C real-valued functions and S is the same subdivision procedure where linear binary averaging is replaced everywhere in the algorithm by a C nonlinear binary averaging rule on pairs of real numbers; then the functions generated by the nonlinear subdivision scheme S are C , where k = min(m, n). Classification: CCScat{I.3.5}{Computer Graphics}{Curve, surface, and solid representations}

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear subdivision through nonlinear averaging

We investigate a general class of nonlinear subdivision algorithms for functions of a real or complex variable built from linear subdivision algorithms by replacing binary linear averages such as the arithmetic mean by binary nonlinear averages such as the geometric mean. Using our method, we can easily create stationary subdivision schemes for Gaussian functions, spiral curves, and circles wit...

متن کامل

Manifold-valued subdivision schemes based on geodesic inductive averaging

Subdivision schemes have become an important tool for approximation of manifold-valued functions. In this paper, we describe a construction of manifold-valued subdivision schemes for geodesically complete manifolds. Our construction is based upon the adaptation of linear subdivision schemes using the notion of repeated binary averaging, where as a repeated binary average we propose to use the g...

متن کامل

Interpolatory quad/triangle subdivision schemes for surface design

Recently the study and construction of quad/triangle subdivision schemes have attracted attention. The quad/triangle subdivision starts with a control net consisting of both quads and triangles and produces finer and finer meshes with quads and triangles. The use of the quad/triangle structure for surface design is motivated by the fact that in CAD modelling, the designers often want to model c...

متن کامل

Spline Subdivision Schemes for Compact Sets with Metric Averages

To de ne spline subdivision schemes for general compact sets we use the representation of spline subdivision schemes in terms of repeated averages and replace the usual average convex combination by a binary averaging operation between two compact sets introduced in and termed here the metric average These schemes are shown to converge in the Hausdor metric and to provide O h approximation x In...

متن کامل

Smoothness of interpolatory multivariate subdivision schemes in Lie groups

Nonlinear subdivision schemes that operate on manifolds are of use whenever manifold valued data have to be processed in a multiscale fashion. This paper considers the case where the manifold is a Lie group and the nonlinear subdivision schemes are derived from linear interpolatory ones by the so-called log-exp analogy. The main result of the paper is that a multivariate interpolatory Lie group...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer Aided Geometric Design

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2009