Activator Protein-1: redox switch controlling structure and DNA-binding
نویسندگان
چکیده
The transcription factor, activator protein-1 (AP-1), binds to cognate DNA under redox control; yet, the underlying mechanism has remained enigmatic. A series of crystal structures of the AP-1 FosB/JunD bZIP domains reveal ordered DNA-binding regions in both FosB and JunD even in absence DNA. However, while JunD is competent to bind DNA, the FosB bZIP domain must undergo a large conformational rearrangement that is controlled by a 'redox switch' centered on an inter-molecular disulfide bond. Solution studies confirm that FosB/JunD cannot undergo structural transition and bind DNA when the redox-switch is in the 'OFF' state, and show that the mid-point redox potential of the redox switch affords it sensitivity to cellular redox homeostasis. The molecular and structural studies presented here thus reveal the mechanism underlying redox-regulation of AP-1 Fos/Jun transcription factors and provide structural insight for therapeutic interventions targeting AP-1 proteins.
منابع مشابه
APE1/Ref-1 enhances DNA binding activity of mutant p53 in a redox-dependent manner.
Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) is a dual function protein; in addition to its DNA repair activity, it can stimulate DNA binding activity of numerous transcription factors as a reduction-oxidation (redox) factor. APE1/Ref-1 has been found to be a potent activator of wild-type p53 (wtp53) DNA binding in vitro and in vivo. Although p53 is mutated in most types of ...
متن کاملMacrophages Protein-1 DNA Binding in Asbestos-Treated Factor-1 Nuclear Protein and Activator Oxidant-Mediated Increases in Redox
متن کامل
Thioredoxin nuclear translocation and interaction with redox factor-1 activates the activator protein-1 transcription factor in response to ionizing radiation.
Thioredoxin (TRX) is a cytoplasmic, redox-sensitive signaling factor believed to participate in the regulation of nuclear transcription factors mediating cellular responses to environmental stress. Activation of the activator protein (AP)-1 transcription factor is thought to be mediated in part by redox-sensitive interactions between the nuclear signaling protein redox factor-1 (Ref-1) and TRX....
متن کاملCompartmentation of Nrf-2 redox control: regulation of cytoplasmic activation by glutathione and DNA binding by thioredoxin-1.
Nrf-2 is a redox-sensitive transcription factor that is activated by an oxidative signal in the cytoplasm but has a critical cysteine that must be reduced to bind to DNA in the nucleus. The glutathione (GSH) and thioredoxin (TRX) systems have overlapping functions in thiol/disulfide redox control in both the cytoplasm and the nucleus, and it is unclear whether these are redundant or have unique...
متن کاملTranscription activator structure reveals redox control of a replication initiation reaction†
Redox changes are one of the factors that influence cell-cycle progression and that control the processes of cellular proliferation, differentiation, senescence and apoptosis. Proteins regulated through redox-sensitive cysteines have been characterized but specific 'sulphydryl switches' in replication proteins remain to be identified. In bovine papillomavirus type-1, DNA replication begins when...
متن کامل