Towards Odalic, a Semantic Table Interpretation Tool in the ADEQUATe Project

نویسنده

  • Tomás Knap
چکیده

The goal of the ADEQUATe project is to assess and improve quality of the (tabular) open data being published at two Austrian open data portals – https://www.data.gv.at and https://www.opendataportal.at. The goal of the quality improvement technique described in this paper is to semantically interpret such tabular data and publish them as Linked Data; this basically means to (1) classify columns of the input data using Linked Data vocabularies, (2) link cell values of the input data against Linked Data entities, (3) discover relations among the columns of the input data by searching for evidences of such relations among Linked Data sources, and (4) export such semantically interpreted data as RDF/Linked Data. In this paper, we describe limitations of TableMiner+, one of the tools for semantic table interpretation, with respect to our needs in the ADEQUATe project. Furthermore, we present Odalic, a tool for (semi)automatic semantic table interpretation and Linked Data publishing and describe how it addresses these limitation. We describe lessons learned using Odalic in the ADEQUATe project and also future work planned.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigating the effects of carbon sequestration project on livability of rural settlement

The carbon sequestration project has sought to increase the empowerment and livelihoods of indigenous peoples with the goal of mobilizing people and involving local communities in the conservation, restoration and exploitation of the principles of natural resources. Therefore, rural livelihood index is one of the most important and important factors used in measuring and evaluating the living c...

متن کامل

A Tool for Creating and Visualizing Semantic Annotations on Relational Tables

Semantically annotating content from relational tables on the Web is a crucial task towards realizing the vision of the Semantic Web. However, there is a lack of open source, user-friendly tools to facilitate this. This paper describes an extension of the TableMiner system, an open source Semantic Table Interpretation system that automatically annotates Web tables using Linked Data in an effect...

متن کامل

Using exceptions in a semantic network for a natural language application

This paper presents the advantages of using a semantic network with default and exception abilities for a specific problern in language processing. More precisely, we show that the features of this semantic network provide an adequate representation of texts expressing a generat rule and its exceptions. General Statements are usually expressed in natural language by the presence of some specifi...

متن کامل

Towards an Analysis Tool for AKL

We present a method for analysis of AKL in the spirit of abstract interpretation that strictly separates the setting up of the abstract semantic equations and the solving of these equations. The fact that AKL has concurrent semantics makes this separation particularly attractive. This document reports work in progress. It is deliverable number D.WP.1.6.1.M1.1 in the ESPRIT project ParForce 6707...

متن کامل

Visualizing Semantic Table Annotations with TableMiner+

This paper describes an extension of the TableMiner system, an open source Semantic Table Interpretation system that annotates Web tables using Linked Data in an effective and efficient approach. It adds a graphical user interface to TableMiner, to facilitate the visualization and correction of automatically generated annotations. This makes TableMiner an ideal tool for the semi-automatic creat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017