Hazy Transparent Cellulose Nanopaper
نویسندگان
چکیده
The aim of this study is to clarify light scattering mechanism of hazy transparent cellulose nanopaper. Clear optical transparent nanopaper consists of 3-15 nm wide cellulose nanofibers, which are obtained by the full nanofibrillation of pulp fibers. At the clear transparent nanopaper with 40 μm thickness, their total transmittance are 89.3-91.5% and haze values are 4.9-11.7%. When the pulp fibers are subjected to weak nanofibrillation, hazy transparent nanopapers are obtained. The hazy transparent nanopaper consists of cellulose nanofibers and some microsized cellulose fibers. At the hazy transparent nanopaper with 40 μm thickness, their total transmittance were constant at 88.6-92.1% but their haze value were 27.3-86.7%. Cellulose nanofibers are solid cylinders, whereas the pulp fibers are hollow cylinders. The hollow shape is retained in the microsized cellulose fibers, but they are compressed flat inside the nanopaper. This compressed cavity causes light scattering by the refractive index difference between air and cellulose. As a result, the nanopaper shows a hazy transparent appearance and exhibits a high thermal durability (295-305 °C), and low thermal expansion (8.5-10.6 ppm/K) because of their high density (1.29-1.55 g/cm3) and crystallinity (73-80%).
منابع مشابه
Solution-processed assembly of ultrathin transparent conductive cellulose nanopaper embedding AgNWs.
Natural biomass based cellulose nanopaper is becoming a promising transparent substrate to supersede traditional petroleum based polymer films in realizing future flexible paper-electronics. Here, ultrathin, highly transparent, outstanding conductive hybrid nanopaper with excellent mechanical flexibility was synthesized by the assembly of nanofibrillated cellulose (NFC) and silver nanowires (Ag...
متن کاملClearly Transparent Nanopaper from Highly Concentrated Cellulose Nanofiber Dispersion Using Dilution and Sonication
Nanopaper prepared from holocellulose pulp is one of the best substrates for flexible electronics because of its high thermal resistance and high clear transparency. However, the clearness of nanopaper decreases with increasing concentration of the starting cellulose nanofiber dispersion-with the use of a 2.2 wt % dispersion, for example-resulting in translucent nanopaper with a high haze of 44...
متن کاملHighly transparent and writable wood all - cellulose hybrid nanostructured paper †
Paper, as an inexpensive substrate for flexible electronics and energy devices, has garnered great attention because of its abundance, biodegradability, renewability and sustainability. However, the intrinsic opacity and higher roughness of regular paper greatly restricts further applications. One promising method is to use cellulose nanofibers (CNs) to fabricate nanopaper with a high optical t...
متن کاملA multiscale crack-bridging model of cellulose nanopaper
The conflict between strength and toughness is a long-standing challenge in advanced materials design. Recently, a fundamental bottom-up material design strategy has been demonstrated using cellulose nanopaper to achieve significant simultaneous increase in both strength and toughness. Fertile opportunities of such a design strategy aside, mechanistic understanding is much needed to thoroughly ...
متن کاملHighly transparent and flexible nanopaper transistors.
Renewable and clean "green" electronics based on paper substrates is an emerging field with intensifying research and commercial interests, as the technology combines the unique properties of flexibility, cost efficiency, recyclability, and renewability with the lightweight nature of paper. Because of its excellent optical transmittance and low surface roughness, nanopaper can host many types o...
متن کامل