Bilateral blockade of MEK- and PI3K-mediated pathways downstream of mutant KRAS as a treatment approach for peritoneal mucinous malignancies
نویسندگان
چکیده
Mucinous colorectal adenocarcinomas (MCAs) are clinically and morphologically distinct from nonmucinous colorectal cancers (CRCs), show a distinct spectrum of genetic alterations (higher KRAS mutations, lower p53, high MUC2), exhibit more aggressive behavior (more prone to peritoneal dissemination and lymph node involvement) and are associated with poorer response to chemotherapy with limited treatment options. Here, we report the effectiveness of combinatorial targeting of two KRAS-mediated parallel pathways in reducing MUC2 production and mucinous tumor growth in vitro and in vivo. By knockdown of mutant KRAS we show that, mutant KRAS (a) is necessary for MUC2 production in vitro and (b) synergistically engages PI3K/AKT and MEK/ERK pathways to maintain MUC2 expression in MCA cells. These results define a novel and a previously undescribed role for oncogenic KRAS in mucinous cancers. MCA cells were sensitive to MEK inhibition suggesting cellular dependence ('addiction') of KRAS-mutant MCA cells on hyperactivation of the MEK-driven pathway. Interestingly, MCA cells, though initially sensitive, were later resistant to PI3K single agent inhibition. Our studies suggest that this resistance involves dynamic rewiring of signaling circuits mediated through relief of RTK inhibition and MEK-ERK rebound activation. This resistance however, could be overcome by co-targeting of PI3K and MEK. Our studies thus provide a rational basis for MEK- and PI3K-targeted combination therapy for not only KRAS mutant MCA but also for other related mucinous neoplasms that overproduce MUC2 and have a high rate of KRAS mutations such as pseudomyxoma peritonei.
منابع مشابه
Coordinate direct input of both KRAS and IGF1 receptor to activation of PI3 kinase in KRAS-mutant lung cancer.
UNLABELLED Using a panel of non-small cell lung cancer (NSCLC) lines, we show here that MAP-ERK kinase (MEK) and RAF inhibitors are selectively toxic for the KRAS-mutant genotype, whereas phosphoinositide 3-kinase (PI3K), AKT, and mTOR inhibitors are not. IGF1 receptor (IGF1R) tyrosine kinase inhibitors also show selectivity for KRAS-mutant lung cancer lines. Combinations of IGF1R and MEK inhib...
متن کاملConcomitant inhibition of receptor tyrosine kinases and downstream AKT synergistically inhibited growth of KRAS/BRAF mutant colorectal cancer cells
Receptor tyrosine kinase (RTK) signaling pathways are frequently activated in cancer cells due to mutations of RTKs and/or their downstream signaling proteins such as KRAS and BRAF. About 40% colorectal cancers (CRCs) contain KRAS or BRAF mutant genes and are resistant to treatments with individual inhibitors of RTKs, AKT, MEK, or BRAF. Therefore, an understanding of the molecular mechanisms of...
متن کاملPI3K pathway activation mediates resistance to MEK inhibitors in KRAS mutant cancers.
The RAS pathway is one of the most frequently deregulated pathways in cancer. RAS signals through multiple effector pathways, including the RAF/mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) kinase (MEK)/ERK MAPK and phosphatidylinositol 3-kinase (PI3K)-AKT signaling cascades. The oncogenic potential of these effector pathways is illustrated by the frequent ...
متن کاملTargeting KRAS-mutant non-small cell lung cancer with the Hsp90 inhibitor ganetespib.
Mutant KRAS is a feature of more than 25% of non-small cell lung cancers (NSCLC) and represents one of the most prevalent oncogenic drivers in this disease. NSCLC tumors with oncogenic KRAS respond poorly to current therapies, necessitating the pursuit of new treatment strategies. Targeted inhibition of the molecular chaperone Hsp90 results in the coordinated blockade of multiple oncogenic sign...
متن کاملSynergistic Effects of Concurrent Blockade of PI3K and MEK Pathways in Pancreatic Cancer Preclinical Models
Patients with pancreatic cancer have dismal prognoses, and novel therapies are urgently needed. Mutations of the KRAS oncogene occur frequently in pancreatic cancer and represent an attractive target. Direct targeting of the predominant KRAS pathways have been challenging and research into therapeutic strategies have been now refocused on pathways downstream of KRAS, phosphoinositide 3-kinase (...
متن کامل