Transferred Dimensionality Reduction
نویسندگان
چکیده
Dimensionality reduction is one of the widely used techniques for data analysis. However, it is often hard to get a demanded low-dimensional representation with only the unlabeled data, especially for the discriminative task. In this paper, we put forward a novel problem of Transferred Dimensionality Reduction, which is to do unsupervised discriminative dimensionality reduction with the help of related prior knowledge from other classes in the same type of concept. We propose an algorithm named Transferred Discriminative Analysis to tackle this problem. It uses clustering to generate class labels for the target unlabeled data, and use dimensionality reduction for them joint with prior labeled data to do subspace selection. This two steps run adaptively to find a better discriminative subspace, and get better clustering results simultaneously. The experimental results on both constrained and unconstrained face recognition demonstrate significant improvements of our algorithm over the state-of-the-art methods.
منابع مشابه
Gaussian Process for Dimensionality Reduction in Transfer Learning
Dimensionality reduction has been considered as one of the most significant tools for data analysis. In general, supervised information is helpful for dimensionality reduction. However, in typical real applications, supervised information in multiple source tasks may be available, while the data of the target task are unlabeled. An interesting problem of how to guide the dimensionality reductio...
متن کامل2D Dimensionality Reduction Methods without Loss
In this paper, several two-dimensional extensions of principal component analysis (PCA) and linear discriminant analysis (LDA) techniques has been applied in a lossless dimensionality reduction framework, for face recognition application. In this framework, the benefits of dimensionality reduction were used to improve the performance of its predictive model, which was a support vector machine (...
متن کاملA Monte Carlo-Based Search Strategy for Dimensionality Reduction in Performance Tuning Parameters
Redundant and irrelevant features in high dimensional data increase the complexity in underlying mathematical models. It is necessary to conduct pre-processing steps that search for the most relevant features in order to reduce the dimensionality of the data. This study made use of a meta-heuristic search approach which uses lightweight random simulations to balance between the exploitation of ...
متن کاملImpact of linear dimensionality reduction methods on the performance of anomaly detection algorithms in hyperspectral images
Anomaly Detection (AD) has recently become an important application of hyperspectral images analysis. The goal of these algorithms is to find the objects in the image scene which are anomalous in comparison to their surrounding background. One way to improve the performance and runtime of these algorithms is to use Dimensionality Reduction (DR) techniques. This paper evaluates the effect of thr...
متن کاملDiagnosis of Diabetes Using an Intelligent Approach Based on Bi-Level Dimensionality Reduction and Classification Algorithms
Objective: Diabetes is one of the most common metabolic diseases. Earlier diagnosis of diabetes and treatment of hyperglycemia and related metabolic abnormalities is of vital importance. Diagnosis of diabetes via proper interpretation of the diabetes data is an important classification problem. Classification systems help the clinicians to predict the risk factors that cause the diabetes or pre...
متن کامل