Standard Sequent Calculi for Lewis' Logics of Counterfactuals
نویسندگان
چکیده
We present new sequent calculi for Lewis’ logics of counterfactuals. The calculi are based on Lewis’ connective of comparative plausibility and modularly capture almost all logics of Lewis’ family. Our calculi are standard, in the sense that each connective is handled by a finite number of rules with a fixed and finite number of premises; internal, meaning that a sequent denotes a formula in the language, and analytical. We present two equivalent versions of the calculi: in the first one, the calculi comprise simple rules; we show that for the basic case of logic V, the calculus allows for syntactic cut-elimination, a fundamental proof-theoretical property. In the second version, the calculi comprise invertible rules, they allow for terminating proof search and semantical completeness. We finally show that our calculi can simulate the only internal (non-standard) sequent calculi previously known for these logics.
منابع مشابه
Counterfactual logics: natural deduction calculi and sequent calculi
Counterfactual logics, which have a long and venerable history [3, 1, 2], have been introduced to capture counterfactual sentences, i.e. conditionals of the form “if A were the case, then B would be the case”, where A is false. If we interpret counterfactuals as material conditionals, we have that all counterfactuals are trivially true and this is an unpleasant conclusion. By means of counterfa...
متن کاملA sequent calculus for Lewis logic V: preliminary results
The logic V is the basic logic of counterfactuals in the family of Lewis’ systems. It is characterized by the whole class of so-called sphere models. We propose a new sequent calculus for this logic. Our calculus takes as primitive Lewis’ connective of comparative plausibility : a formula A B intuitively means that A is at least as plausible as B. Our calculus is standard in the sense that each...
متن کاملSequent Systems for Lewis' Conditional Logics
We present unlabelled cut-free sequent calculi for Lewis’ conditional logic V and extensions, in both the languages with the entrenchment connective and the strong conditional. The calculi give rise to Pspace-decision procedures, also in the language with the weak conditional. Furthermore, they are used to prove the Craig interpolation property for all the logics under consideration, and yield ...
متن کاملModularisation of Sequent Calculi for Normal and Non-normal Modalities
In this work we explore the connections between (linear) nested sequent calculi and ordinary sequent calculi for normal and non-normal modal logics. By proposing local versions to ordinary sequent rules we obtain linear nested sequent calculi for a number of logics, including to our knowledge the first nested sequent calculi for a large class of simply dependent multimodal logics, and for many ...
متن کاملProof Search in Nested Sequent Calculi
We propose a notion of focusing for nested sequent calculi for modal logics which brings down the complexity of proof search to that of the corresponding sequent calculi. The resulting systems are amenable to specifications in linear logic. Examples include modal logic K, a simply dependent bimodal logic and the standard non-normal modal logics. As byproduct we obtain the first nested sequent c...
متن کامل