Language-Constraint Reachability Learning in Probabilistic Graphs
نویسندگان
چکیده
The probabilistic graphs framework models the uncertainty inherent in realworld domains by means of probabilistic edges whose value quantifies the likelihood of the edge existence or the strength of the link it represents. The goal of this paper is to provide a learning method to compute the most likely relationship between two nodes in a framework based on probabilistic graphs. In particular, given a probabilistic graph we adopted the language-constraint reachability method to compute the probability of possible interconnections that may exists between two nodes. Each of these connections may be viewed as feature, or a factor, between the two nodes and the corresponding probability as its weight. Each observed link is considered as a positive instance for its corresponding link label. Given the training set of observed links a L2-regularized Logistic Regression has been adopted to learn a model able to predict unobserved link labels. The experiments on a real world collaborative filtering problem proved that the proposed approach achieves better results than that obtained adopting classical methods.
منابع مشابه
Learning in Probabilistic Graphs Exploiting Language-Constrained Patterns
The probabilistic graphs framework models the uncertainty inherent in real-world domains by means of probabilistic edges whose value quantifies the likelihood of the edge existence or the strength of the link it represents. The goal of this paper is to provide a learning method to compute the most likely relationship between two nodes in a framework based on probabilistic graphs. In particular,...
متن کاملDistance-Constraint Reachability Computation in Uncertain Graphs
Driven by the emerging network applications, querying and mining uncertain graphs has become increasingly important. In this paper, we investigate a fundamental problem concerning uncertain graphs, which we call the distance-constraint reachability (DCR) problem: Given two vertices s and t, what is the probability that the distance from s to t is less than or equal to a user-defined threshold d...
متن کاملPRISM User ’ s Manual ( Version 1 . 12 . 1 )
Preface The past several years have witnessed a tremendous interest in logic-based probabilistic learning as testified by the number of formalisms and systems and their applications. Logic-based probabilistic learning is a multidisciplinary research area that integrates relational or logic formalisms, probabilistic reasoning mechanisms, and machine learning and data mining principles. Logic-bas...
متن کاملPRISM User ’ s Manual ( Version 1 . 11 . 1 )
Preface The past few years have witnessed a tremendous interest in logic-based probabilistic learning as testified by the number of formalisms and systems and their applications. Logic-based probabilistic learning is a multidisciplinary research area that integrates relational or logic formalisms, probabilistic reasoning mechanisms, and machine learning and data mining principles. Logic-based p...
متن کاملPRISM User ’ s Manual ( Version 1 . 12 )
Preface The past few years have witnessed a tremendous interest in logic-based probabilistic learning as testified by the number of formalisms and systems and their applications. Logic-based probabilistic learning is a multidisciplinary research area that integrates relational or logic formalisms, probabilistic reasoning mechanisms, and machine learning and data mining principles. Logic-based p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1205.5367 شماره
صفحات -
تاریخ انتشار 2012