Neuron specific enolase is a potential target for regulating neuronal cell survival and death: implications in neurodegeneration and regeneration
نویسندگان
چکیده
Enolase is a multifunctional enzyme primarily involved in catalyzing the conversion of 2phosphoglycerate to phosphoenolpyruvate during glycolysis and the reverse reaction during gluconeogenesis[1–4]. Though typically expressed in the cytosol, enolase has been shown to migrate to the cell surface upon inflammatory signal[3]. It then enhances antigen presentation for the invasion of host cells via plasminogen binding and subsequent plasmin activation, leading to degradation of the extracellular matrix. Cell surface expression of enolase, possibly due to an association with the urokinase-type plasminogen activator (uPA)/uPA receptor complex, additionally induces the production of reactive oxygen species, nitric oxide, and pro-inflammatory cytokines [tumor necrotic factor (TNF)-α, interleukin (IL)-1β, interferon-γ, and transforming growth factor-β] and chemokines [monocyte chemotactic protein 1 and macrophage inflammatory protein (MIP)-1α] to augment neurodegenerative response[3,5]. Lysosomal proteases, especially cathepsins (e.g. Cathepsin X or Cat X), are instrumental in processing several neuronal proteins that generate either
منابع مشابه
New Insights into the Role of Neuron-Specific Enolase in Neuro-Inflammation, Neurodegeneration, and Neuroprotection
Neurodegeneration is a complex process that leads to irreversible neuronal damage and death in spinal cord injury (SCI) and various neurodegenerative diseases, which are serious, debilitating conditions. Despite exhaustive research, the cause of neuronal damage in these degenerative disorders is not completely understood. Elevation of cell surface α-enolase activates various inflammatory pathwa...
متن کاملDifferentiation of human embryonic stem cells into neurons
Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...
متن کاملDifferentiation of human embryonic stem cells into neurons
Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...
متن کاملRepair of Spinal Cord Injury by Co-Transplantation of embryonic Stem Cell-Derived Motor Neuron and Olfactory Ensheathing Cell
Background: The failure of regeneration after spinal cord injury (SCI) has been attributed to axonal demyelination and neuronal death. Cellular replacement and white matter regeneration are both necessary for SCI repair. In this study, we evaluated the co-transplantation of olfactory ensheathing cells (OEC) and embryonic stem (ES) cell-derived motor neurons (ESMN) on contused SCI. Methods: OEC...
متن کاملRapid Induction of Neural Differentiation in Human Umbilical Cord Matrix Mesenchymal Stem Cells by cAMP-elevating Agents
Human umbilical cord matrix (hUCM) is considered as a promising source of mesenchymal stem cells (MSCs) due to several advantages over other tissues. The potential of neural differentiation of hUCM-MSCs is of great interest in the context of treating neurodegenerative diseases. In recent years, considerable efforts have been made to establish in vitro conditions for improving the different...
متن کامل