Evidence of tectorial membrane radial motion in a propagating mode of a complex cochlear model.
نویسندگان
چکیده
Knowledge of vibratory patterns in the cochlea is crucial to understanding the stimulation of mechanosensory cells. Experiments to determine the motion of the cochlear partition and surrounding fluid are extremely challenging. As a result, the motion data are incomplete and often contradictory. The bending mechanism of hair bundles, thought to be related to the shear motion and endolymphatic flow between the tectorial membrane (TM) and reticular lamina (RL), is controversial. We, therefore, extend the frequency range of our previous hybrid analytical-finite-element approach to model the basal as well as apical regions of the guinea pig cochlea. We solve the fluid-solid interaction eigenvalue problem for the axial wavenumber, fluid pressure, and vibratory relative motions of the cochlear partition as a function of frequency. A simple monophasic vibratory mode of the basilar membrane is found at both ends of the cochlea. However, this simple movement is associated with a complex frequency-dependent relative deformation between the TM and the RL. We provide evidence of a radial component of TM motion that is out of phase with the RL and that facilitates the bending of outer hair cell stereocilia at appropriate frequencies at both the cochlear base and apex.
منابع مشابه
Two-Dimensional Cochlear Micromechanics Measured In Vivo Demonstrate Radial Tuning within the Mouse Organ of Corti.
UNLABELLED The exquisite sensitivity and frequency discrimination of mammalian hearing underlie the ability to understand complex speech in noise. This requires force generation by cochlear outer hair cells (OHCs) to amplify the basilar membrane traveling wave; however, it is unclear how amplification is achieved with sharp frequency tuning. Here we investigated the origin of tuning by measurin...
متن کاملLongitudinally propagating traveling waves of the mammalian tectorial membrane.
Sound-evoked vibrations transmitted into the mammalian cochlea produce traveling waves that provide the mechanical tuning necessary for spectral decomposition of sound. These traveling waves of motion that have been observed to propagate longitudinally along the basilar membrane (BM) ultimately stimulate the mechano-sensory receptors. The tectorial membrane (TM) plays a key role in this process...
متن کاملDirect visualization of organ of corti kinematics in a hemicochlea.
The basilar membrane in the mammalian cochlea vibrates when the cochlea receives a sound stimulus. This mechanical vibration is transduced into hair cell receptor potentials and thereafter encoded by action potentials in the auditory nerve. Knowledge of the mechanical transformation that converts basilar membrane vibration into hair cell stimulation has been limited, until recently, to hypothet...
متن کاملThree-dimensional motion of the organ of Corti.
The vibration of the organ of Corti, a three-dimensional micromechanical structure that incorporates the sensory cells of the hearing organ, was measured in three mutually orthogonal directions. This was achieved by coupling the light of a laser Doppler vibrometer into the side arm of an epifluorescence microscope to measure velocity along the optical axis of the microscope, called the transver...
متن کاملA Targeted Deletion in α-Tectorin Reveals that the Tectorial Membrane Is Required for the Gain and Timing of Cochlear Feedback
alpha-tectorin is an extracellular matrix molecule of the inner ear. Mice homozygous for a targeted deletion in a-tectorin have tectorial membranes that are detached from the cochlear epithelium and lack all noncollagenous matrix, but the architecture of the organ of Corti is otherwise normal. The basilar membranes of wild-type and alpha-tectorin mutant mice are tuned, but the alpha-tectorin mu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 101 16 شماره
صفحات -
تاریخ انتشار 2004