Substrate turnover by transporters curtails synaptic glutamate transients.

نویسندگان

  • S Mennerick
  • W Shen
  • W Xu
  • A Benz
  • K Tanaka
  • K Shimamoto
  • K E Isenberg
  • J E Krause
  • C F Zorumski
چکیده

Although inhibitors of glutamate transport prolong synaptic currents at many glutamate synapses, the cause of the current prolongation is unclear. Transport inhibitors may prolong synaptic currents by simply interfering with synaptic glutamate binding to transporters, by inhibiting substrate translocation, or by promoting accumulation of ambient glutamate, which may act cooperatively at receptors with synaptic glutamate. We show that reversal of the membrane potential of astrocytes surrounding the synapse prolongs synaptic currents but does not decrease the apparent affinity of transporters or significantly alter glutamate-dependent kinetics of macroscopic transporter currents in excised membrane patches. Positive membrane potentials do not affect binding of a nontransported glutamate analog, nor do positive membrane potentials alter the number of transporters available to bind analog. We also test the hypothesis that glutamate accumulation during uptake inhibition by transporter substrates is the direct cause of synaptic current prolongations. Transporter substrates elevate ambient glutamate near synapses by fostering reverse transport of endogenous glutamate. However, increases in ambient glutamate cannot account for the prolongations of synaptic currents, because a nonsubstrate transport inhibitor does not foster reverse uptake yet it prolongs synaptic currents. Moreover, exogenous glutamate does not mimic synaptic current prolongations induced by substrate inhibitors. These results provide strong support for a major role of substrate translocation in determining the time course of the glutamate concentration transient at excitatory synapses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ionotropic Glutamate Receptors and their Role in Neurological Diseases

Glutamate is extensively and relatively uniformly distributed in the central nervous system (CNS) and its effects mediated by two distinct groups of receptors including Ionotropic and metabotropic glutamate receptors. Concentration of glutamate in the nervous system is much higher than in other tissues. Glutamate receptors play an important role in synaptic transmission, neural plasticity and n...

متن کامل

Transporters buffer synaptically released glutamate on a submillisecond time scale.

The role of transporters in clearing free glutamate from the synaptic cleft was studied in rat CA1 hippocampal neurons cultured on glial microislands. The time course of free glutamate in the cleft during a synaptic event was estimated by measuring the extent to which the rapidly dissociating AMPA receptor antagonist kynurenate (KYN) was replaced by glutamate during a synaptic response. Dose in...

متن کامل

Aspartate-444 Is Essential for Productive Substrate Interactions in a Neuronal Glutamate Transporter

In the central nervous system, electrogenic sodium- and potassium-coupled glutamate transporters terminate the synaptic actions of this neurotransmitter. In contrast to acidic amino acids, dicarboxylic acids are not recognized by glutamate transporters, but the related bacterial DctA transporters are capable of transporting succinate and other dicarboxylic acids. Transmembrane domain 8 contains...

متن کامل

The Relationship between Glutamate and Multiple Sclerosis

Glutamate is the most important excitatory neurotransmitter in the central nervous system which is involved in synaptic transmission, brain development, synaptic plasticity, learning, and memory. Normally, the enzymatic destruction of glutamate does not occur in the synaptic and extracellular space, but glutamate is removed through specific transporter proteins, leading to stabilization of glut...

متن کامل

Estrogen and progesterone attenuate glutamate neurotoxicity via regulation of EAAT3 and GLT-1 in a rat model of ischemic stroke

Objective(s): Glutamate is the most widespread neurotransmitter in the central nervous system and has several functions as a neuromodulator in the brain although in pathological conditions like ischemia it is excessively released causing cell death. Under physiological conditions, glutamate is rapidly scavenged from the synaptic cleft by excitatory amino-acid transport...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 19 21  شماره 

صفحات  -

تاریخ انتشار 1999