PAMAM-Lys, a Novel Vaccine Delivery Vector, Enhances the Protective Effects of the SjC23 DNA Vaccine against Schistosoma japonicum Infection
نویسندگان
چکیده
BACKGROUND Schistosomiasis japonica remains a major public-health concern in China. Praziquantel-based chemotherapy effectively reduces both infections and intensity; however, it can not prevent re-infection. Furthermore, there is an increasing concern about praziquantel resistance following long-term repeated use of the drug in endemic areas. Therefore, development of a schistosomiasis vaccine, as a strategy to prevent and control schistosomiasis japonica, has been given high priority. The present study was conducted to develop PAMAM dendrimers as a novel vaccine delivery vector for a schistosomiasis japonica DNA vaccine and evaluate its ability to enhance protective effects against Schistosoma japonicum infection. METHODOLOGY/PRINCIPAL FINDINGS Lysine was used to modify 4.0G PAMAM, and the modified product PAMAM-Lys was synthesized. PAMAM-Lys showed both high transfection and low cytotocity for gene delivery in vitro. DNA vaccines combined with PAMAM-Lys produced higher level of protection compare with naked DNA vaccines against S. japonicum infection in a mouse model. Futhermore,antibodies from mice immunized with PAMAM-Lys combined DNA vaccines were significantly higher than those of mice immunized with the naked DNA vaccines. The PAMAM-Lys vector elicited a predominantly IgG2a antibody response and a tremendously increase in the production of IL-2 and IFN-γ. CONCLUSION/SIGNIFICANCE Lysine-modified PAMAM-Lys is an excellent vector. PAMAM-Lys may enhance the immunoreactivity of DNA vaccine and increase the protective effect of the SjC23 DNA vaccine against S. japonicum infection.
منابع مشابه
Protective immunity induced with 23 kDa membrane protein dna vaccine of Schistosoma japonicum Chinese strain in infected C57BL/6 mice.
A 23 kDa membrane protein DNA vaccine for Schistosoma japonicum Chinese strain was developed and tested for its protective efficacy and immune responses in infected C57BL/6 mice. The cDNA encoding SjC23 amplified from pUC19-SjC23 were subcloned into an eukaryotic expression vector (pcDNA3.1). Forty-eight female C57BL/6 mice were divided into three groups. Each mouse of group A (control group) w...
متن کاملEnhanced Immune Responses of a Hepatitis C Virus core DNA Vaccine by co-Inoculating Interleukin-12 Expressing Vector in Mice
Background: Hepatitis C (HCV) is a worldwide problem without an effective vaccine with more than 170 million chronically infected people worldwide. DNA vaccines expressing antigenic portions of the virus with adjutants have recently been developed as a novel vaccination technology. Objectives: In the present study, a DNA vaccine expressing HCV core protein was developed with IL12 as a genetic a...
متن کاملCombined TLR7/8 and TLR9 Ligands Potentiate the Activity of a Schistosoma japonicum DNA Vaccine
BACKGROUND Toll-like receptor (TLR) ligands have been explored as vaccine adjuvants for tumor and virus immunotherapy, but few TLR ligands affecting schistosoma vaccines have been characterized. Previously, we developed a partially protective DNA vaccine encoding the 26-kDa glutathione S-transferase of Schistosoma japonicum (pVAX1-Sj26GST). METHODOLOGY/PRINCIPAL FINDINGS In this study, we eva...
متن کاملGene Gun Bombardment with DNA-Coated Golden Particles Enhanced the Protective Effect of a DNA Vaccine Based on Thioredoxin Glutathione Reductase of Schistosoma japonicum
Schistosomiasis, caused by infection with Schistosoma species, remains an important parasitic zoonosis. Thioredoxin glutathione reductase of Schistosoma japonicum (SjTGR) plays an important role in the development of the parasite and for its survival. Here we present a recombinant plasmid DNA vaccine, pVAX1/SjTGR, to estimate its protection against S. japonicum in BALB/c mice. The DNA vaccine a...
متن کاملOral Delivery of the Sj23LHD-GST Antigen by Salmonella typhimurium Type III Secretion System Protects against Schistosoma japonicum Infection in Mice
BACKGROUND Schistosomiasis japonica is a zoonotic parasitic disease and oral vaccine delivery system would be benefit for prevention of this disease. Although attenuated salmonella has been used as an antigen expression vector for oral vaccine development, the membrane-bound vacuoles in which bacteria reside hinders the presentation of expressed heterologous antigens to the major histocompatibi...
متن کامل