Differential role of mitogen-activated protein kinase in three distinct phases of memory for sensitization in Aplysia.

نویسندگان

  • Shiv K Sharma
  • Carolyn M Sherff
  • Justin Shobe
  • Martha W Bagnall
  • Michael A Sutton
  • Thomas J Carew
چکیده

The mitogen-activated protein kinase (MAPK) pathway has been implicated recently in synaptic plasticity and memory. Here we used tail shock-induced sensitization of the tail-elicited siphon withdrawal reflex in Aplysia to examine the role of MAPK in three different phases of memory. We show that a specific pattern of serotonin (5-HT) application that produces intermediate-term and long-term synaptic facilitation (ITF and LTF, respectively) of the sensory-motor (SN-MN) synapses in Aplysia leads to sustained activation of extracellular signal-regulated kinase in the ventrocaudal cluster sensory neurons (SNs), which include the tail SNs. Furthermore, repeated tail shocks that induce intermediate-term and long-term memory (ITM and LTM, respectively) for sensitization also lead to sustained MAPK activation in the SNs. Given these results, we next examined the requirement of MAPK activity in (1) SN-MN synaptic facilitation and (2) memory for sensitization in Aplysia, by inhibiting MEK, the upstream kinase that phosphorylates and activates MAPK. In cellular experiments, we show that MAPK activity is required for ITF of tail SN-tail MN synapses, and, in parallel behavioral experiments, we show that ITM requires MAPK activity for its induction but not its expression. In contrast, short-term memory for sensitization does not require MAPK activity. Finally, 5-HT-induced LTF has been shown previously to require MAPK activity. Here we show that LTM for sensitization also requires MAPK activity. These results provide evidence that MAPK plays important roles specifically in long-lasting phases of synaptic plasticity and memory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation of a Tyrosine Kinase-MAPK Cascade Enhances the Induction of Long-Term Synaptic Facilitation and Long-Term Memory in Aplysia

Tyrosine kinases have been implicated in cellular processes thought to underlie learning and memory. Here we show that tyrosine kinases play a direct role in long-term synaptic facilitation (LTF) and long-term memory (LTM) for sensitization in Aplysia. Tyrosine kinase activity is required for serotonin-induced LTF of sensorimotor (SN-MN) synapses, and enhancement of endogenous tyrosine kinase a...

متن کامل

P3: Mechanisms of TrkB-Mediated Hippocampal Long-Term Potentiation in Learning and Memory

Long-term potentiation (LTP) is a process that certain types of synaptic stimulation lead to a long-lasting enhancement in the strength of synaptic transmission. Studies in recent years indicate the importance of molecular pathways in the development of memory and learning. Tropomyosin receptor kinase B (TrkB) is a member of the neurotrophin receptor tyrosine kinase family, that its ligand is b...

متن کامل

Temporal Phases of Activity-Dependent Plasticity and Memory Are Mediated by Compartmentalized Routing of MAPK Signaling in Aplysia Sensory Neurons

An activity-dependent form of intermediate memory (AD-ITM) for sensitization is induced in Aplysia by a single tail shock that gives rise to plastic changes (AD-ITF) in tail sensory neurons (SNs) via the interaction of action potential firing in the SN coupled with the release of serotonin in the CNS. Activity-dependent long-term facilitation (AD-LTF, lasting >24hr) requires protein synthesis d...

متن کامل

The Implication of Androgens in the Presence of Protein Kinase C to Repair Alzheimer’s Disease-Induced Cognitive Dysfunction

Aging, as a major risk factor of memory deficiency, affects neural signaling pathways in hippocampus. In particular, age-dependent androgens deficiency causes cognitive impairments. Several enzymes like protein kinase C (PKC) are involved in memory deficiency. Indeed, PKC regulatory process mediates α-secretase activation to cleave APP in β-amyloid cascade and tau proteins phosphorylation mecha...

متن کامل

P20: The Role of Protein Kinases in Memory

When an experience is encrypted into a long-lasting memory, it is believed that specific sets of neurons in the brain of the animal undergo changes including the strengthening of preexisting synapses and the growth and maintenance of new synaptic connections. These activity-dependent synaptic changes appear to require the coordination of a variety of cellular processes in spatially separated ce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 23 9  شماره 

صفحات  -

تاریخ انتشار 2003