Type II and III Taste Bud Cells Preferentially Expressed Kainate Glutamate Receptors in Rats.

نویسندگان

  • Sang-Bok Lee
  • Cil-Han Lee
  • Se-Nyun Kim
  • Ki-Myung Chung
  • Young-Kyung Cho
  • Kyung-Nyun Kim
چکیده

Glutamate-induced cobalt uptake reveals that non-NMDA glutamate receptors (GluRs) are present in rat taste bud cells. Previous studies involving glutamate induced cobalt staining suggest this uptake mainly occurs via kainate type GluRs. It is not known which of the 4 types of taste bud cells express subunits of kainate GluR. Circumvallate and foliate papillae of Sprague-Dawley rats (45~60 days old) were used to search for the mRNAs of subunits of non-NMDA GluRs using RT-PCR with specific primers for GluR1-7, KA1 and KA2. We also performed RT-PCR for GluR5, KA1, PLCbeta2, and NCAM/SNAP 25 in isolated single cells from taste buds. Taste epithelium, including circumvallate or foliate papilla, express mRNAs of GluR5 and KA1. However, non-taste tongue epithelium expresses no subunits of non-NMDA GluRs. Isolated single cell RT-PCR reveals that the mRNAs of GluR5 and KA1 are preferentially expressed in Type II and Type III cells over Type I cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glutamate-induced cobalt uptake elicited by kainate receptors in rat taste bud cells.

Glutamate-induced cobalt uptake reveals non-N-methyl-D-aspartate (non-NMDA) glutamate receptors (GluRs) in rat taste bud cells. However, it is not known which type of non-NMDA glutamate receptors is involved. We used a cobalt staining technique combined with pharmacological tests for kainate or alpha-amino-3-hydroxy-5-methyl-isoxazole-propionic acid (AMPA) receptors and/or immunohistochemistry ...

متن کامل

Glutamate May Be an Efferent Transmitter That Elicits Inhibition in Mouse Taste Buds

Recent studies suggest that l-glutamate may be an efferent transmitter released from axons innervating taste buds. In this report, we determined the types of ionotropic synaptic glutamate receptors present on taste cells and that underlie this postulated efferent transmission. We also studied what effect glutamate exerts on taste bud function. We isolated mouse taste buds and taste cells, condu...

متن کامل

Expression of GABAergic Receptors in Mouse Taste Receptor Cells

BACKGROUND Multiple excitatory neurotransmitters have been identified in the mammalian taste transduction, with few studies focused on inhibitory neurotransmitters. Since the synthetic enzyme glutamate decarboxylase (GAD) for gamma-aminobutyric acid (GABA) is expressed in a subset of mouse taste cells, we hypothesized that other components of the GABA signaling pathway are likely expressed in t...

متن کامل

Cell types and lineages in taste buds.

Taste buds are the sensory endorgans for gustation. In mammals, taste buds comprise a collection of ~50–100 elongate epithelial cells and a small number of proliferative basal cells. Ultrastructural studies reveal three distinct anatomical types of elongate taste cells within each taste bud: Type I, Type II and Type III, first defined by Murray based on his studies of rabbit foliate taste buds ...

متن کامل

Functional expression of the extracellular-Ca2+-sensing receptor in mouse taste cells.

Three types of morphologically and functionally distinct taste cells operate in the mammalian taste bud. We demonstrate here the expression of two G-protein-coupled receptors from the family C, CASR and GPRC6A, in the taste tissue and identify transcripts for both receptors in type I cells, no transcripts in type II cells and only CASR transcripts in type III cells, by using the SMART-PCR RNA a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Korean journal of physiology & pharmacology : official journal of the Korean Physiological Society and the Korean Society of Pharmacology

دوره 13 6  شماره 

صفحات  -

تاریخ انتشار 2009