Generalised Hilbert Numerators Ii

نویسنده

  • JAN SNELLMAN
چکیده

Let K[〈X〉] denote the large polynomial ring (in the sense of Halter-Koch [7]) on the set X = {x1, x2, x3, . . . } of indeterminates. For each integer n, there is a truncation homomorphism ρn : K[〈X〉] → K[x1, . . . , xn]. If I is a homogeneous ideal of K[〈X〉], then the N-graded Hilbert series of K[x1,...,xn] ρn(I) can be written as gn(t) (1−t) ; it was shown in [13] that if in addition I is what we call locally finitely generated, then gn(t) → g(t) ∈ Z[[t]], the so-called Hilbert numerator of I . In this article, we generalise this result to N-graded locally finitely generated ideals. For monomial ideals in K[〈X〉], we define the [X]-graded Hilbert numerator as the Hilbert numerator of the contracted monomial ideal in K[X], for which the standard combinatorial and homological methods for calculating multi-graded Hilbert series of monomial ideals in finitely many variables apply. Finally, we show that all polynomial N-graded Hilbert numerators can be obtained from ideals generated in finitely many variables, and that the the closure in Z[[t]] of this set is the set of all N-graded Hilbert numerators. Our main tools are the approximation theorem of [11], relating the initial ideal with the initial ideal of the truncated ideal, and the identification of K[[X]] with the ring of all number-theoretic functions [5] which allows the passing from the characteristic function of the complement of a monomial ideal to its Hilbert numerator to be seen as an example of Möbius inversion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Structure of C∗-extreme Points in Spaces of Completely Positive Linear Maps on C∗-algebras

If A is a unital C∗-algebra and if H is a complex Hilbert space, then the set SH(A) of all unital completely positive linear maps from A to the algebra B(H) of continuous linear operators on H is an operator-valued, or generalised, state space of A. The usual state space of A occurs with the one-dimensional Hilbert space C. The structure of the extreme points of generalised state spaces was det...

متن کامل

Frobenius Problem for Semigroups S (d1, d2, d3)

The matrix representation of the set ∆(d), d = (d1, d2, d3), of the integers which are unrepresentable by d1, d2, d3 is found. The diagrammatic procedure of calculation of the generating function Φ ( d; z ) for the set ∆(d) is developed. The Frobenius number F ( d ) , genus G ( d ) and Hilbert series H(d; z) of a graded subring for non–symmetric and symmetric semigroups S ( d ) are found. The u...

متن کامل

A Generalised Commutativity Theorem for Pk - Quasihyponormal Operators

For Hilbert space operators A and B, let δAB denote the generalised derivation δAB(X) = AX − XB and let 4AB denote the elementary operator4AB(X) = AXB−X. If A is a pk-quasihyponormal operator, A ∈ pk−QH, and B∗ is an either p-hyponormal or injective dominant or injective pk−QH operator (resp., B∗ is an either p-hyponormal or dominant or pk −QH operator), then δAB(X) = 0 =⇒ δA∗B∗(X) = 0 (resp., ...

متن کامل

Möbius Pairs of Simplices and Commuting Pauli Operators

There exists a large class of groups of operators acting on Hilbert spaces, where commutativity of group elements can be expressed in the geometric language of symplectic polar spaces embedded in the projective spaces PG(n, p), n being odd and p a prime. Here, we present a result about commuting and non-commuting group elements based on the existence of socalled Möbius pairs of n-simplices, i. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000