Visual Saliency Detection and its Application to Image Retrieval

نویسنده

  • Oleg Muratov
چکیده

People perceive any kind of information with different level of attention and involvement. It is due to the way how our brain functions, redundancy and importance of the perceived data. This work deals with visual information, in particular with images. Image analysis and processing is often requires running computationally expensive algorithms. The knowledge of which part of an image is important over other parts allows for reduction of data to be processed. Besides computational cost a broad variety of applications, including image compression, quality assessment, adaptive content display and rendering, can benefit from this kind of information. The development of an accurate visual importance estimation method may bring a useful tool for image processing domain and that is the main goal for this work. In the following two novel approaches to saliency detection are presented. In comparison to previous works in this field the proposed approaches tackles saliency estimation on the object-wise level. In addition, one of the proposed approach solves saliency detection problem through modelling 3-D spatial relationships between objects in a scene. Moreover, a novel idea of the application of saliency to diversification of image retrieval results is presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compressed-Sampling-Based Image Saliency Detection in the Wavelet Domain

When watching natural scenes, an overwhelming amount of information is delivered to the Human Visual System (HVS). The optic nerve is estimated to receive around 108 bits of information a second. This large amount of information can’t be processed right away through our neural system. Visual attention mechanism enables HVS to spend neural resources efficiently, only on the selected parts of the...

متن کامل

Reduced-Reference Image Quality Assessment based on saliency region extraction

In this paper, a novel saliency theory based RR-IQA metric is introduced. As the human visual system is sensitive to the salient region, evaluating the image quality based on the salient region could increase the accuracy of the algorithm. In order to extract the salient regions, we use blob decomposition (BD) tool as a texture component descriptor. A new method for blob decomposition is propos...

متن کامل

Multiple Structure Based Saliency Detection and Its Application in Image Retrieval

Saliency Detection is a hot research topic in both biological and computer vision. Salient structures, edges, regions would greatly contribute to high-level semantics understanding of people’s attention and improve retrieval precision, object detection, edge detection and etc. In this paper, based on the biological principle in visual system, we present a saliency detection system which combine...

متن کامل

A Saliency Detection Model via Fusing Extracted Low-level and High-level Features from an Image

Saliency regions attract more human’s attention than other regions in an image. Low- level and high-level features are utilized in saliency region detection. Low-level features contain primitive information such as color or texture while high-level features usually consider visual systems. Recently, some salient region detection methods have been proposed based on only low-level features or hig...

متن کامل

Just Noticeable Difference Estimation Using Visual Saliency in Images

Due to some physiological and physical limitations in the brain and the eye, the human visual system (HVS) is unable to perceive some changes in the visual signal whose range is lower than a certain threshold so-called just-noticeable distortion (JND) threshold. Visual attention (VA) provides a mechanism for selection of particular aspects of a visual scene so as to reduce the computational loa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013