EEG resolutions in detecting and decoding finger movements from spectral analysis
نویسندگان
چکیده
Mu/beta rhythms are well-studied brain activities that originate from sensorimotor cortices. These rhythms reveal spectral changes in alpha and beta bands induced by movements of different body parts, e.g., hands and limbs, in electroencephalography (EEG) signals. However, less can be revealed in them about movements of different fine body parts that activate adjacent brain regions, such as individual fingers from one hand. Several studies have reported spatial and temporal couplings of rhythmic activities at different frequency bands, suggesting the existence of well-defined spectral structures across multiple frequency bands. In the present study, spectral principal component analysis (PCA) was applied on EEG data, obtained from a finger movement task, to identify cross-frequency spectral structures. Features from identified spectral structures were examined in their spatial patterns, cross-condition pattern changes, detection capability of finger movements from resting, and decoding performance of individual finger movements in comparison to classic mu/beta rhythms. These new features reveal some similar, but more different spatial and spectral patterns as compared with classic mu/beta rhythms. Decoding results further indicate that these new features (91%) can detect finger movements much better than classic mu/beta rhythms (75.6%). More importantly, these new features reveal discriminative information about movements of different fingers (fine body-part movements), which is not available in classic mu/beta rhythms. The capability in decoding fingers (and hand gestures in the future) from EEG will contribute significantly to the development of non-invasive BCI and neuroprosthesis with intuitive and flexible controls.
منابع مشابه
Decoding Individual Finger Movements from One Hand Using Human EEG Signals
Brain computer interface (BCI) is an assistive technology, which decodes neurophysiological signals generated by the human brain and translates them into control signals to control external devices, e.g., wheelchairs. One problem challenging noninvasive BCI technologies is the limited control dimensions from decoding movements of, mainly, large body parts, e.g., upper and lower limbs. It has be...
متن کاملDecoding repetitive finger movements with brain activity acquired via non-invasive electroencephalography
We investigated how well repetitive finger tapping movements can be decoded from scalp electroencephalography (EEG) signals. A linear decoder with memory was used to infer continuous index finger angular velocities from the low-pass filtered fluctuations of the amplitude of a plurality of EEG signals distributed across the scalp. To evaluate the accuracy of the decoder, the Pearson's correlatio...
متن کاملEvaluation of EEG Features in Decoding Individual Finger Movements from One Hand
With the advancements in modern signal processing techniques, the field of brain-computer interface (BCI) is progressing fast towards noninvasiveness. One challenge still impeding these developments is the limited number of features, especially movement-related features, available to generate control signals for noninvasive BCIs. A few recent studies investigated several movement-related featur...
متن کاملRecognition of finger movements using EEG signals for control of upper limb prosthesis using logistic regression
Brain computer interface decodes signals that the human brain generates and uses them to control external devices. The signals that are acquired are classified into movements on the basis of feature vector after being extracted from raw signals. This paper presents a novel method of classification of four finger movements (thumb movement, index finger movement, middle and index finger combined ...
متن کاملDecoding Imagined 3D Hand Movement Trajectories From EEG: Evidence to Support the Use of Mu, Beta, and Low Gamma Oscillations
Objective: To date, motion trajectory prediction (MTP) of a limb from non-invasive electroencephalography (EEG) has relied, primarily, on band-pass filtered samples of EEG potentials i.e., the potential time-series model. Most MTP studies involve decoding 2D and 3D arm movements i.e., executed arm movements. Decoding of observed or imagined 3D movements has been demonstrated with limited succes...
متن کامل