Coloring of the Self - Organising Maps based on class labels

نویسندگان

  • Andreas Rauber
  • Taha Abdel Aziz
چکیده

The Self-Organizing Map (SOM) is a useful and strong tool for data analysis, especially for large data sets or data sets of high dimensionality. SOM visualizations map the data model dimensions to visual dimensions like color and position, thus they help exploring the SOM. Visualization can also involve the data itself so that it helps accessing information that are not available in the trained SOM, thereby enabling a deeper look inside the data. If the data comes with supervised class labels, these labels can be also involved in the visualization, thus enabling the user to have a clearer idea about the data and the structures learned by the SOM. In this work we propose a novel SOM visualization method, namely the SOM class coloring, which is based on the data class labels. This method nds a

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Directional Stroke Width Transform to Separate Text and Graphics in City Maps

One of the complex documents in the real world is city maps. In these kinds of maps, text labels overlap by graphics with having a variety of fonts and styles in different orientations. Usually, text and graphic colour is not predefined due to various map publishers. In most city maps, text and graphic lines form a single connected component. Moreover, the common regions of text and graphic lin...

متن کامل

Improving the Quality of Labels for Self-Organising Maps Using Fine-Tuning

Vector representation of legal documents is still the best way for computing classification clusters and labelling of its contents. A very special problem occurs with self organising maps: strong clusters tend to dominate neighbouring smaller clusters in terms of their weight vector structure, which influences the labels extracted from these. This unwelcome side-effect can be overcome efficient...

متن کامل

Visualising Class Distribution on Self-organising Maps

The Self-Organising Map is a popular unsupervised neural network model which has been used successfully in various contexts for clustering data. Even though labelled data is not required for the training process, in many applications class labelling of some sort is available. A visualisation uncovering the distribution and arrangement of the classes over the map can help the user to gain a bett...

متن کامل

Unsupervised multimodal processing

We present two separate algorithms for unsupervised multimodal processing. Our first proposal, the singlepass Hebbian linked self-organising map network, significantly reduces the training of Hebbian-linked selforganising maps by computing in a single epoch the weights of the links associating the separate modal maps. Our second proposal, based on the counterpropagation network algorithm, imple...

متن کامل

On Document Classification with Self-Organising Maps

This research deals with the use of self-organising maps for the classification of text documents. The aim was to classify documents to separate classes according to their topics. We therefore constructed self-organising maps that were effective for this task and tested them with German newspaper documents. We compared the results gained to those of k nearest neighbour searching and k-means clu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016