Spatio-temporal variability in remotely sensed land surface temperature, and its relationship with physiographic variables in the Russian Altay Mountains

نویسندگان

  • Ruben Van De Kerchove
  • Stefaan Lhermitte
  • Sander Veraverbeke
  • Rudi Goossens
چکیده

Spatio-temporal variability in energy fluxes at the earth’s surface implies spatial and temporal changes in observed Land Surface Temperatures (LST). These fluxes are largely determined by variation in meteorological conditions, surface cover and soil characteristics. Consequently, a change in these parameters will be reflected in a different temporal LST behavior which can be observed by remotely sensed time series. Therefore, the objective of this paper is to perform a quantitative analysis on the parameters that determine this variability in LST to estimate the impact of changes in these parameters on the surface thermal regime. This study was conducted in the Russian Altay Mountains, an area characterized by strong gradients in meteorological conditions and surface cover. Spatio-temporal variability in LST was assessed by applying the Fast Fourier Transform (FFT) on eight year of MODIS Aqua LST time series, herein considering both day and night time series as well as the diurnal difference. This FFT method was chosen as it allows to discriminate significant periodics, and as such enables distinction between short-term weather components, and strong, climate related, periodic patterns. A quantitative analysis was based on multiple linear regression models between the calculated, significant Fourier components (i.e. the an∗Corresponding author. Tel : +3292644646; Fax : +3292644985. Email address: [email protected] (R. Van De Kerchove) Preprint submitted to International Journal of Applied Earth Observation and GeoinformationJuly 15, 2011 nual and average component) and five physiographic variables representing the regional variability in meteorological conditions and surface cover. Physiographic predictors were elevation, potential solar insolation, topographic convergence, vegetation cover and snow cover duration. Results illustrated the strong inverse relationship between averaged daytime and diurnal difference LST and snow duration, with a R adj of 0.85 and 0.60, respectively. On the other hand, nocturnal LST showed a strong connection with elevation and the amount of vegetation cover. Amplitudes of the annual harmonic experienced both for daytime and nighttime LST similar trends with the set of physiographic variables -with stronger relationships at night-. As such, topographic convergence was found to be the principal single predictor which demonstrated the importance of severe temperature inversions in the region. Furthermore, limited contribution of the physiographic predictors to the observed variation in the annual signal of the diurnal difference was retrieved, although a significant phase divergence was noticed between the majority of the study region and the perennial snowfields. Hence, this study gives valuable insights into the complexity of the spatio-temporal variability in LST, which can be used in future studies to estimate the ecosystems’ response on changing climatic conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatio-temporal variability of aerosol characteristics in Iran using remotely sensed datasets

The present study is the first attempt to examine temporal and spatial characteristics of aerosol properties and classify their modes over Iran. The data used in this study include the records of Aerosol Optical Depth (AOD) and Angstrom Exponent (AE) from MODerate Resolution Imaging Spectroradiometer (MODIS) and Aerosol Index (AI) from the Ozone Monitoring Instrument (OMI), obtained from 2005 t...

متن کامل

Spatio-temporal variability of aerosol characteristics in Iran using remotely sensed datasets

The present study is the first attempt to examine temporal and spatial characteristics of aerosol properties and classify their modes over Iran. The data used in this study include the records of Aerosol Optical Depth (AOD) and Angstrom Exponent (AE) from MODerate Resolution Imaging Spectroradiometer (MODIS) and Aerosol Index (AI) from the Ozone Monitoring Instrument (OMI), obtained from 2005 t...

متن کامل

Impact of urban land cover change on land surface temperature

The rapid growth in urban population is seen to create a need for the development of more urban infrastructures. In order to meet this need, natural surfaces such as vegetation are been replaced with non-vegetated surfaces such as asphalt and bricks which has the ability to absorb heat and release it later. This change in land cover is seen to increase the land surface temperature. Previous stu...

متن کامل

Empirical Estimation of Near-Surface Air Temperature in China from MODIS LST Data by Considering Physiographic Features

Spatially and temporally resolved observations of near-surface air temperatures (Ta, 1.5–2 m above ground) are essential for understanding hydrothermal circulation at the land–atmosphere interface. However, the uneven spatial distribution of meteorological stations may not effectively capture the true nature of the overall climate pattern. Several studies have attempted to retrieve spatially co...

متن کامل

Spatio-temporal analysis of diurnal air temperature parameterization in Weather Stations over Iran

     Diurnal air temperature modeling is a beneficial experimental and mathematical approach which can be used in many fields related to Geosciences. The modeling and spatio-temporal analysis of air Diurnal Temperature Cycle (DTC) was conducted using data obtained from 105 synoptic stations in Iran during the years 2013-2014 for the first time; the key variable for controlling the cosine term i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Applied Earth Observation and Geoinformation

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2013