A method to standardize a reference of scalp EEG recordings to a point at infinity.
نویسنده
چکیده
The effect of an active reference in EEG recording is one of the oldest technical problems in EEG practice. In this paper, a method is proposed to approximately standardize the reference of scalp EEG recordings to a point at infinity. This method is based on the fact that the use of scalp potentials to determine the neural electrical activities or their equivalent sources does not depend on the reference, so we may approximately reconstruct the equivalent sources from scalp EEG recordings with a scalp point or average reference. Then the potentials referenced at infinity are approximately reconstructed from the equivalent sources. As a point at infinity is far from all the possible neural sources, this method may be considered as a reference electrode standardization technique (REST). The simulation studies performed with assumed neural sources included effects of electrode number, volume conductor model and noise on the performance of REST, and the significance of REST in EEG temporal analysis. The results showed that REST is potentially very effective for the most important superficial cortical region and the standardization could be especially important in recovering the temporal information of EEG recordings.
منابع مشابه
EEG Simulation Accuracy: Reference Choice and Head Models Extension
The EEG forward problem involves computing the scalp potentials at a finite set of electrode locations for a source configuration in a specified volume-conductor head model. Brain electrical activity spreads (spatially) over the whole head volume conductor. However, under certain circumstances, it is possible to limit the volume within which the study can be done, thus reducing model size. As...
متن کاملHow do reference montage and electrodes setup affect the measured scalp EEG potentials?
OBJECTIVE Human scalp electroencephalogram (EEG) is widely applied in cognitive neuroscience and clinical studies due to its non-invasiveness and ultra-high time resolution. However, the representativeness of the measured EEG potentials for the underneath neural activities is still a problem under debate. This study aims to investigate systematically how both reference montage and electrodes se...
متن کاملThe Effect of Electroencephalogram (EEG) Reference Choice on Information-Theoretic Measures of the Complexity and Integration of EEG Signals
Converging evidence suggests that human cognition and behavior emerge from functional brain networks interacting on local and global scales. We investigated two information-theoretic measures of functional brain segregation and integration-interaction complexity C I (X), and integration I(X)-as applied to electroencephalographic (EEG) signals and how these measures are affected by choice of EEG...
متن کاملA Comparative Study of Average, Linked Mastoid, and REST References for ERP Components Acquired during fMRI
In simultaneous electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI) studies, average reference (AR), and digitally linked mastoid (LM) are popular re-referencing techniques in event-related potential (ERP) analyses. However, they may introduce their own physiological signals and alter the EEG/ERP outcome. A reference electrode standardization technique (REST) that calcul...
متن کاملA statistically robust EEG re-referencing procedure to mitigate reference effect.
BACKGROUND The electroencephalogram (EEG) remains the primary tool for diagnosis of abnormal brain activity in clinical neurology and for in vivo recordings of human neurophysiology in neuroscience research. In EEG data acquisition, voltage is measured at positions on the scalp with respect to a reference electrode. When this reference electrode responds to electrical activity or artifact all e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physiological measurement
دوره 22 4 شماره
صفحات -
تاریخ انتشار 2001