Online Parameter Identification of Ultracapacitor Models Using the Extended Kalman Filter

نویسندگان

  • Lei Zhang
  • Fengchun Sun
  • David G. Dorrell
چکیده

Ultracapacitors (UCs) are the focus of increasing attention in electric vehicle and renewable energy system applications due to their excellent performance in terms of power density, efficiency, and lifespan. Modeling and parameterization of UCs play an important role in model-based regulation and management for a reliable and safe operation. In this paper, an equivalent circuit model template composed of a bulk capacitor, a second-order capacitance-resistance network, and a series resistance, is employed to represent the dynamics of UCs. The extended Kalman Filter is then used to recursively estimate the model parameters in the Dynamic Stress Test (DST) on a specially established test rig. The DST loading profile is able to emulate the practical power sinking and sourcing of UCs in electric vehicles. In order to examine the accuracy of the identified model, a Hybrid Pulse Power Characterization test is carried out. The validation result demonstrates that the recursively calibrated model can precisely delineate the dynamic voltage behavior of UCs under the discrepant loading condition, and the online identification approach is thus capable of extracting the model parameters in a credible and robust manner.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of an Autonomous Underwater Vehicle Dynamic Using Extended Kalman Filter with ARMA Noise Model

In the procedure of designing an underwater vehicle or robot, its maneuverability and controllability must be simulated and tested, before the product is finalized for manufacturing. Since the hydrodynamic forces and moments highly affect the dynamic and maneuverability of the system, they must be estimated with a reasonable accuracy. In this study, hydrodynamic coefficients of an autonomous un...

متن کامل

The Particle Filter and Extended Kalman Filter methods for the structural system identification considering various uncertainties

Structural system identification using recursive methods has been a research direction of increasing interest in recent decades. The two prominent methods, including the Extended Kalman Filter (EKF) and the Particle Filter (PF), also known as the Sequential Monte Carlo (SMC), are advantageous in this field. In this study, the system identification of a shake table test of a 4-story steel struct...

متن کامل

Time Delay and Data Dropout Compensation in Networked Control Systems Using Extended Kalman Filter

In networked control systems, time delay and data dropout can degrade the performance of the control system and even destabilize the system. In the present paper, the Extended Kalman filter is employed to compensate the effects of time delay and data dropout in feedforward and feedback paths of networked control systems. In the proposed method, the extended Kalman filter is used as an observer ...

متن کامل

Monetary Policy Reaction Functions in Iran: An Extended Kalman Filter Approach

Estimates of instrumental rules can be utilized to describe central bank's behavior and monetary policy stance. In the last decade, considerable attention has been given to time-varying parameter (TVP) specification of monetary policy rules. Constant-parameter reaction functions likely ignore the impact of model uncertainty, shifting preferences and nonlinearities of policymaker's choices. This...

متن کامل

Online Identification of Nonlinear Mechanics Using Extended Kalman Filters with Basis Function Networks

For high performance speed and position control of electrical drives fast online identification is needed for time-varying inertia or load conditions in combination with adaptive controllers. In this paper Extended Kalman Filters are applied and optimized for deterministic parameter variations by integrating basis function networks into the common structure of the Kalman Filter. It is shown tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014