Scalable Forecasting Techniques Applied to Big Electricity Time Series
نویسندگان
چکیده
This paper presents different scalable methods to predict time series of very long length such as time series with a high sampling frequency. The Apache Spark framework for distributed computing is proposed in order to achieve the scalability of the methods. Namely, the existing MLlib machine learning library from Spark has been used. Since MLlib does not support multivariate regression, the forecasting problem has been split into h forecasting subproblems, where h is the number of future values to predict. Then, representative forecasting methods of different nature have been chosen such as models based on trees, two ensembles techniques (gradient-boosted trees and random forests), and a linear regression as a reference method. Finally, the methodology has been tested on a real-world dataset from the Spanish electricity load data with a ten-minute frequency.
منابع مشابه
Day-ahead Price Forecasting of Electricity Markets by a New Hybrid Forecast Method
Energy price forecast is the key information for generating companies to prepare their bids in the electricity markets. However, this forecasting problem is complex due to nonlinear, non-stationary, and time variant behavior of electricity price time series. Accordingly, in this paper a new strategy is proposed for electricity price forecast. The forecast strategy includes Wavelet Transform (WT...
متن کاملElectricity Load Forecasting Using Machine Learning Techniques
Electricity load forecasting has become increasingly important due to the strong impact on the operational efficiency of the power system. However, the accurate load prediction remains a challenging task due to several issues such as the nonlinear character of the time series or the seasonal patterns it exhibits. A large variety of techniques have been proposed to this aim, such as statistical ...
متن کاملElectricity Load Forecasting Using Machine Learning Techniques
Electricity load forecasting has become increasingly important due to the strong impact on the operational efficiency of the power system. However, the accurate load prediction remains a challenging task due to several issues such as the nonlinear character of the time series or the seasonal patterns it exhibits. A large variety of techniques have been proposed to this aim, such as statistical ...
متن کاملElectricity Load Forecasting Using Machine Learning Techniques
Electricity load forecasting has become increasingly important due to the strong impact on the operational efficiency of the power system. However, the accurate load prediction remains a challenging task due to several issues such as the nonlinear character of the time series or the seasonal patterns it exhibits. A large variety of techniques have been proposed to this aim, such as statistical ...
متن کاملElectricity price forecasting – ARIMA model approach
Electricity price forecasting is becoming more important in everyday business of power utilities. Good forecasting models can increase effectiveness of producers and buyers playing roles in electricity market. Price is also a very important element in investment planning process. This paper presents a forecasting technique to model day-ahead spot price using well known ARIMA model to analyze an...
متن کامل