The wrickkened pathways of FGF23, MEPE and PHEX.
نویسنده
چکیده
The last 350 years since the publication of the first medical monograph on rickets (old English term wrickken) (Glisson et al., 1651) have seen spectacular advances in our understanding of mineral-homeostasis. Seminal and exciting discoveries have revealed the roles of PTH, vitamin D, and calcitonin in regulating calcium and phosphate, and maintaining healthy teeth and skeleton. However, it is clear that the PTH/Vitamin D axis does not account for the entire picture, and a new bone-renal metabolic milieu has emerged, implicating a novel set of matrix proteins, hormones, and Zn-metallopeptidases. The primary defects in X-linked hypophosphatemic rickets (HYP) and autosomal-dominant hypophosphatemic rickets (ADHR) are now identified as inactivating mutations in a Zn-metalloendopeptidase (PHEX) and activating mutations in fibroblast-growth-factor-23 (FGF23), respectively. In oncogenic hypophosphatemic osteomalacia (OHO), several tumor-expressed proteins (MEPE, FGF23, and FRP-4) have emerged as candidate mediators of the bone-renal pathophysiology. This has stimulated the proposal of a global model that takes into account the remarkable similarities between the inherited diseases (HYP and ADHR) and the tumor-acquired disease OHO. In HYP, loss of PHEX function is proposed to result in an increase in uncleaved full-length FGF23 and/or inappropriate processing of MEPE. In ADHR, a mutation in FGF23 results in resistance to proteolysis by PHEX or other proteases and an increase in half-life of full-length phosphaturic FGF23. In OHO, over-expression of FGF23 and/or MEPE is proposed to result in abnormal renal-phosphate handling and mineralization. Although this model is attractive, many questions remain unanswered, suggesting a more complex picture. The following review will present a global hypothesis that attempts to explain the experimental and clinical observations in HYP, ADHR, and OHO, plus diverse mouse models that include the MEPE null mutant, HYP-PHEX transgenic mouse, and MEPE-PHEX double-null-mutant.
منابع مشابه
FGF23, PHEX, and MEPE regulation of phosphate homeostasis and skeletal mineralization.
There is evidence for a hormone/enzyme/extracellular matrix protein cascade involving fibroblastic growth factor 23 (FGF23), a phosphate-regulating gene with homologies to endopeptidases on the X chromosome (PHEX), and a matrix extracellular phosphoglycoprotein (MEPE) that regulates systemic phosphate homeostasis and mineralization. Genetic studies of autosomal dominant hypophosphatemic rickets...
متن کاملOsteocyte-Specific Deletion of Fgfr1 Suppresses FGF23
Increases in fibroblastic growth factor 23 (FGF23 or Fgf23) production by osteocytes result in hypophosphatemia and rickets in the Hyp mouse homologue of X-linked hypophosphatemia (XLH). Fibroblastic growth factor (FGF) signaling has been implicated in the pathogenesis of Hyp. Here, we conditionally deleted FGF receptor 1 (FGFR1 or Fgfr1) in osteocytes of Hyp mice to investigate the role of aut...
متن کاملPhosphatonins: physiological role and pathological changes.
Maintenance of proper serum phosphate concentrations is required for healthy life, and critical for normal skeletal development and integrity. Several hormones and regulatory factors such as vitamin D, parathyroid hormone (PTH), and the phosphatonins (FGF-23, sFRP-4, MEPE) among others, may play a role only in the long-term regulation of phosphorus homeostasis.FGF23 is part of a previously unre...
متن کاملASARM peptides: PHEX-dependent and -independent regulation of serum phosphate.
Increased acidic serine aspartate-rich MEPE-associated motif (ASARM) peptides cause mineralization defects in X-linked hypophosphatemic rickets mice (HYP) and "directly" inhibit renal phosphate uptake in vitro. However, ASARM peptides also bind to phosphate-regulating gene with homologies to endopeptidases on the X chromosome (PHEX) and are a physiological substrate for this bone-expressed, pho...
متن کاملPathogenic role of Fgf23 in Hyp mice.
Inactivating mutations of the PHEX (phosphate-regulating gene with homologies to endopeptidases on the X chromosome) endopeptidase, the disease-causing gene in X-linked hypophosphatemia (XLH), results in increased circulating levels of fibroblastic growth factor-23 (FGF23), a bone-derived phosphaturic factor. To determine the causal role of FGF23 in XLH, we generated a combined Fgf23-deficient ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Critical reviews in oral biology and medicine : an official publication of the American Association of Oral Biologists
دوره 15 5 شماره
صفحات -
تاریخ انتشار 2004