Not only students can express alcohol dehydrogenase: goldfish can too!

نویسندگان

  • Valérie Chamberland
  • Pierre Rioux
چکیده

This article describes a novel approach to study the metabolic regulation of the respiratory system in vertebrates that suits physiology lessons for undergraduate students. It consists of an experimental demonstration of the goldfish's (Carassius auratus) adaptations to anoxia. The goldfish is one of the few vertebrates showing strong enzymatic plasticity for the expression of alcohol dehydrogenase (ADH), which allows it to survive long periods of severe anoxia. Therefore, we propose two simple laboratory exercises in which students are first asked to characterize the distribution of ADH isozymes in the goldfish by performing cellulose acetate electrophoresis. The second part of this laboratory lesson is the determination of liver glycogen. To further student comprehension, an interspecies comparative component is integrated, in which the same subjects are studied in an anoxia-sensitive species, the brook charr (Salvelinus fontinalis). ADH in goldfish is restricted to skeletal muscles, where it catalyzes alcoholic fermentation, permitting ethanol excretion through the gills and therefore preventing lactate acidosis caused by sustained glycolysis during anoxia. Electrophoresis also reveals the occurrence of a liver isozyme in the brook charr, which ADH catalyzes in the opposite pathway, allowing the usual ethanol degradation. As for the liver glycogen assay, it shows largely superior content in the goldfish liver compared with the brook charr, providing goldfish with a sustained energy supply during anoxia. The results of this laboratory exercise clearly demonstrate several physiological strategies developed by goldfish to cope with such a crucial environmental challenge as oxygen depletion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Teaching In The Laboratory Not only students can express alcohol dehydrogenase: goldfish can too!

Chamberland V, Rioux P. Not only students can express alcohol dehydrogenase: goldfish can too! Adv Physiol Educ 34: 222–227, 2010; doi:10.1152/advan.00088.2009.—This article describes a novel approach to study the metabolic regulation of the respiratory system in vertebrates that suits physiology lessons for undergraduate students. It consists of an experimental demonstration of the goldfish’s ...

متن کامل

Biochemical characterization of recombinant benzyl alcohol dehydrogenase from Rhodococcus ruber UKMP-5M

Benzyl Alcohol Dehydrogenase (BADH) is an important enzyme for hydrocarbon degradation, which can oxidize benzyl alcohols to aldehydes, while being capable of catalyzing a reversible reaction by reducing benzaldehyde. BADH is a member of medium chain alcohol dehydrogenases, in which zinc and NAD are essential for enzyme activity. This paper describes the expression, purification, and characteri...

متن کامل

Biochemical characterization of recombinant benzyl alcohol dehydrogenase from Rhodococcus ruber UKMP-5M

Benzyl Alcohol Dehydrogenase (BADH) is an important enzyme for hydrocarbon degradation, which can oxidize benzyl alcohols to aldehydes, while being capable of catalyzing a reversible reaction by reducing benzaldehyde. BADH is a member of medium chain alcohol dehydrogenases, in which zinc and NAD are essential for enzyme activity. This paper describes the expression, purification, and characteri...

متن کامل

Aerobic and anaerobic metabolism in oxygen minimum layer fishes: the role of alcohol dehydrogenase.

Zones of minimum oxygen form at intermediate depth in all the world's oceans as a result of global circulation patterns that keep the water at oceanic mid-depths out of contact with the atmosphere for hundreds of years. In areas where primary production is very high, the microbial oxidation of sinking organic matter results in very low oxygen concentrations at mid-depths. Such is the case with ...

متن کامل

Intestinal peroxisomes of goldfish (Carassius auratus)--examination for hydrolase, dehydrogenase and carnitine acetyltransferase activities.

1. Rate sedimentation and isopycnic centrifugation were used to analyse the subcellular sites of enzymes in homogenates of goldfish intestinal mucosa. 2. The results allowed the following allocations to be made: carnitine acetyl transferase-mitochondrial and peroxisomal, xanthine dehydrogenase and NAD: alpha-glycerophosphate dehydrogenase soluble phase, NADP: isocitrate dehydrogenase soluble ph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Advances in physiology education

دوره 34 4  شماره 

صفحات  -

تاریخ انتشار 2010